森林火灾蔓延模型中一类奇摄动微分方程系统解的渐近性

IF 1.1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
R. L. Argun, N. T. Levashova, E. V. Polezhaeva
{"title":"森林火灾蔓延模型中一类奇摄动微分方程系统解的渐近性","authors":"R. L. Argun,&nbsp;N. T. Levashova,&nbsp;E. V. Polezhaeva","doi":"10.1134/S004057792508001X","DOIUrl":null,"url":null,"abstract":"<p> We propose a forest fire model consisting of two equations, namely those describing the motion of the temperature front and the burned biomass front. To obtain a physically meaningful description of the solution behavior, we use equations with modular nonlinearity. For the proposed models, using asymptotic analysis methods, we have studied the existence of a solution in the form of a front. The asymptotic analysis allows us to estimate the speed of the front and determine the limits of the model applicability. When generalized to the two-dimensional case, the model can be used to simulate the motion of the combustion front in real forest fires, as well as to pose inverse problems for determining the amount of burned biomass after the passage of the combustion front. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 2","pages":"1311 - 1323"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the solution of a system of singularly perturbed differential equations in the forest fire spread models\",\"authors\":\"R. L. Argun,&nbsp;N. T. Levashova,&nbsp;E. V. Polezhaeva\",\"doi\":\"10.1134/S004057792508001X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We propose a forest fire model consisting of two equations, namely those describing the motion of the temperature front and the burned biomass front. To obtain a physically meaningful description of the solution behavior, we use equations with modular nonlinearity. For the proposed models, using asymptotic analysis methods, we have studied the existence of a solution in the form of a front. The asymptotic analysis allows us to estimate the speed of the front and determine the limits of the model applicability. When generalized to the two-dimensional case, the model can be used to simulate the motion of the combustion front in real forest fires, as well as to pose inverse problems for determining the amount of burned biomass after the passage of the combustion front. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 2\",\"pages\":\"1311 - 1323\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S004057792508001X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S004057792508001X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个由两个方程组成的森林火灾模型,即描述温度锋和燃烧生物量锋运动的方程。为了获得解行为的物理上有意义的描述,我们使用具有模非线性的方程。对于所提出的模型,我们利用渐近分析方法,研究了其解的存在性。渐近分析使我们能够估计锋面的速度并确定模型的适用范围。将该模型推广到二维情况下,可用于模拟真实森林火灾中燃烧锋的运动,并为确定燃烧锋通过后的生物质燃烧量提出逆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics of the solution of a system of singularly perturbed differential equations in the forest fire spread models

We propose a forest fire model consisting of two equations, namely those describing the motion of the temperature front and the burned biomass front. To obtain a physically meaningful description of the solution behavior, we use equations with modular nonlinearity. For the proposed models, using asymptotic analysis methods, we have studied the existence of a solution in the form of a front. The asymptotic analysis allows us to estimate the speed of the front and determine the limits of the model applicability. When generalized to the two-dimensional case, the model can be used to simulate the motion of the combustion front in real forest fires, as well as to pose inverse problems for determining the amount of burned biomass after the passage of the combustion front.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信