{"title":"具有Wada性质的非游走连续体的几何解剖","authors":"D. W. Serow","doi":"10.1134/S0040577925080070","DOIUrl":null,"url":null,"abstract":"<p> A brief history of the Birkhoff curve and Wada basins is presented. The Birkhoff curves are found to be indecomposable continua that are the common boundary of two regions having a single composant. Therefore, a Birkhoff curve contains at most one fixed point. A simplest geometric model of the Birkhoff curve has been constructed by matching the tails of the composants of the indecomposable Knaster continuum having two composants. By analogy to Knaster’s continuum, examples of indecomposable continua having four and and six composants are constructed. By pairwise matching the tails of composants, the indecomposable continua are obtained that are common boundaries of three and four regions, respectively. There exist two and four topologically different matchings, respectively. Clearly, <span>\\(2n\\)</span>-composant indecomposable continuum admits <span>\\(2^n\\)</span> ways of matching. These geometric constructions demonstrate the anatomical structure of nonwandering continua possessing the Wada property for a dynamical system acting on the plane with a single hyperbolic fixed point. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"224 2","pages":"1428 - 1436"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the geometric anatomy of a nonwandering continuum possessing the Wada property\",\"authors\":\"D. W. Serow\",\"doi\":\"10.1134/S0040577925080070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> A brief history of the Birkhoff curve and Wada basins is presented. The Birkhoff curves are found to be indecomposable continua that are the common boundary of two regions having a single composant. Therefore, a Birkhoff curve contains at most one fixed point. A simplest geometric model of the Birkhoff curve has been constructed by matching the tails of the composants of the indecomposable Knaster continuum having two composants. By analogy to Knaster’s continuum, examples of indecomposable continua having four and and six composants are constructed. By pairwise matching the tails of composants, the indecomposable continua are obtained that are common boundaries of three and four regions, respectively. There exist two and four topologically different matchings, respectively. Clearly, <span>\\\\(2n\\\\)</span>-composant indecomposable continuum admits <span>\\\\(2^n\\\\)</span> ways of matching. These geometric constructions demonstrate the anatomical structure of nonwandering continua possessing the Wada property for a dynamical system acting on the plane with a single hyperbolic fixed point. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"224 2\",\"pages\":\"1428 - 1436\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577925080070\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925080070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On the geometric anatomy of a nonwandering continuum possessing the Wada property
A brief history of the Birkhoff curve and Wada basins is presented. The Birkhoff curves are found to be indecomposable continua that are the common boundary of two regions having a single composant. Therefore, a Birkhoff curve contains at most one fixed point. A simplest geometric model of the Birkhoff curve has been constructed by matching the tails of the composants of the indecomposable Knaster continuum having two composants. By analogy to Knaster’s continuum, examples of indecomposable continua having four and and six composants are constructed. By pairwise matching the tails of composants, the indecomposable continua are obtained that are common boundaries of three and four regions, respectively. There exist two and four topologically different matchings, respectively. Clearly, \(2n\)-composant indecomposable continuum admits \(2^n\) ways of matching. These geometric constructions demonstrate the anatomical structure of nonwandering continua possessing the Wada property for a dynamical system acting on the plane with a single hyperbolic fixed point.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.