{"title":"利用可学结构增强和结构自注意缓解图表示学习中的程度偏差","authors":"Van Thuy Hoang;Hyeon-Ju Jeon;O-Joun Lee","doi":"10.1109/TNSE.2025.3563697","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. By considering the structural similarities among non-adjacent nodes to generate informative edges, DegFairGT can overcome the imbalanced messages while still preserving the graph structures. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 5","pages":"3656-3670"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Degree Bias in Graph Representation Learning With Learnable Structural Augmentation and Structural Self-Attention\",\"authors\":\"Van Thuy Hoang;Hyeon-Ju Jeon;O-Joun Lee\",\"doi\":\"10.1109/TNSE.2025.3563697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. By considering the structural similarities among non-adjacent nodes to generate informative edges, DegFairGT can overcome the imbalanced messages while still preserving the graph structures. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 5\",\"pages\":\"3656-3670\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10974679/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10974679/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Mitigating Degree Bias in Graph Representation Learning With Learnable Structural Augmentation and Structural Self-Attention
Graph Neural Networks (GNNs) update node representations through message passing, which is primarily based on the homophily principle, assuming that adjacent nodes share similar features. However, in real-world graphs with long-tailed degree distributions, high-degree nodes dominate message passing, causing a degree bias where low-degree nodes remain under-represented due to inadequate messages. The main challenge in addressing degree bias is how to discover non-adjacent nodes to provide additional messages to low-degree nodes while reducing excessive messages for high-degree nodes. Nevertheless, exploiting non-adjacent nodes to provide valuable messages is challenging, as it could generate noisy information and disrupt the original graph structures. To solve it, we propose a novel Degree Fairness Graph Transformer, named DegFairGT, to mitigate degree bias by discovering structural similarities between non-adjacent nodes through learnable structural augmentation and structural self-attention. Our key idea is to exploit non-adjacent nodes with similar roles in the same community to generate informative edges under our augmentation, which could provide informative messages between nodes with similar roles while ensuring that the homophily principle is maintained within the community. By considering the structural similarities among non-adjacent nodes to generate informative edges, DegFairGT can overcome the imbalanced messages while still preserving the graph structures. To enable DegFairGT to learn such structural similarities, we then propose a structural self-attention to capture the similarities between node pairs. To preserve global graph structures and prevent graph augmentation from hindering graph structure, we propose a Self-Supervised Learning task to preserve p-step transition probability and regularize graph augmentation. Extensive experiments on six datasets showed that DegFairGT outperformed state-of-the-art baselines in degree fairness analysis, node classification, and node clustering tasks.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.