{"title":"面向绿色通信的无人机辅助BS睡眠策略","authors":"Huan Li;Daosen Zhai;Ruonan Zhang;Lei Liu;Celimuge Wu;Shahid Mumtaz;Mohsen Guizani","doi":"10.1109/TNSE.2025.3565316","DOIUrl":null,"url":null,"abstract":"The evolving mobile communication technology is constantly striving to meet the growing demands for higher transmission rate, greater connection density, and lower end-to-end latency. However, the concomitant multi-fold increase in energy consumption leads to a severe loss of profit for operators and a great challenge for global climate change. To enable green communication, we propose a novel unmanned aerial vehicle (UAV) assisted ground base station (GBS) sleep network architecture, in which most of the communication components of the GBSs with low traffic are shut down, and meanwhile the UAVs are employed as aerial base stations (ABSs) to compensate for the service loss of the sleep GBSs. To further explore the strengths of the proposed architecture, we formulate a joint optimization problem of GBS sleep strategy, ABS trajectory, and ABS transmission power, with the goal to minimize the system energy consumption. For solving the formulated problem, we first relax the integer variables and design an iterative algorithm based on the block coordinate descent (BCD) and sequential convex approximation (SCA) techniques. Then, the iterative algorithm is embedded into the branch and bound (B&B) architecture to get the final mixed integer solution. Considering the high complexity of the B&B algorithm, we especially propose the external polygon contraction algorithm (EPCA) to drastically reduce the computation time for the delay sensitive service. Numerical simulation results demonstrate that the B&B based algorithm is superior to other comparison schemes and the EPCA significantly degrades the computation time with acceptable performance.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 5","pages":"3770-3783"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV Assisted BS Sleep Strategy for Green Communication\",\"authors\":\"Huan Li;Daosen Zhai;Ruonan Zhang;Lei Liu;Celimuge Wu;Shahid Mumtaz;Mohsen Guizani\",\"doi\":\"10.1109/TNSE.2025.3565316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolving mobile communication technology is constantly striving to meet the growing demands for higher transmission rate, greater connection density, and lower end-to-end latency. However, the concomitant multi-fold increase in energy consumption leads to a severe loss of profit for operators and a great challenge for global climate change. To enable green communication, we propose a novel unmanned aerial vehicle (UAV) assisted ground base station (GBS) sleep network architecture, in which most of the communication components of the GBSs with low traffic are shut down, and meanwhile the UAVs are employed as aerial base stations (ABSs) to compensate for the service loss of the sleep GBSs. To further explore the strengths of the proposed architecture, we formulate a joint optimization problem of GBS sleep strategy, ABS trajectory, and ABS transmission power, with the goal to minimize the system energy consumption. For solving the formulated problem, we first relax the integer variables and design an iterative algorithm based on the block coordinate descent (BCD) and sequential convex approximation (SCA) techniques. Then, the iterative algorithm is embedded into the branch and bound (B&B) architecture to get the final mixed integer solution. Considering the high complexity of the B&B algorithm, we especially propose the external polygon contraction algorithm (EPCA) to drastically reduce the computation time for the delay sensitive service. Numerical simulation results demonstrate that the B&B based algorithm is superior to other comparison schemes and the EPCA significantly degrades the computation time with acceptable performance.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"12 5\",\"pages\":\"3770-3783\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980029/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980029/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
UAV Assisted BS Sleep Strategy for Green Communication
The evolving mobile communication technology is constantly striving to meet the growing demands for higher transmission rate, greater connection density, and lower end-to-end latency. However, the concomitant multi-fold increase in energy consumption leads to a severe loss of profit for operators and a great challenge for global climate change. To enable green communication, we propose a novel unmanned aerial vehicle (UAV) assisted ground base station (GBS) sleep network architecture, in which most of the communication components of the GBSs with low traffic are shut down, and meanwhile the UAVs are employed as aerial base stations (ABSs) to compensate for the service loss of the sleep GBSs. To further explore the strengths of the proposed architecture, we formulate a joint optimization problem of GBS sleep strategy, ABS trajectory, and ABS transmission power, with the goal to minimize the system energy consumption. For solving the formulated problem, we first relax the integer variables and design an iterative algorithm based on the block coordinate descent (BCD) and sequential convex approximation (SCA) techniques. Then, the iterative algorithm is embedded into the branch and bound (B&B) architecture to get the final mixed integer solution. Considering the high complexity of the B&B algorithm, we especially propose the external polygon contraction algorithm (EPCA) to drastically reduce the computation time for the delay sensitive service. Numerical simulation results demonstrate that the B&B based algorithm is superior to other comparison schemes and the EPCA significantly degrades the computation time with acceptable performance.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.