相关偏微分方程的雅可比猜想与可积性

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Yisong Yang
{"title":"相关偏微分方程的雅可比猜想与可积性","authors":"Yisong Yang","doi":"10.1016/j.physd.2025.134862","DOIUrl":null,"url":null,"abstract":"<div><div>The Jacobian conjecture over a field of characteristic zero is considered directly in view of the nonlinear partial differential equations it is associated with. Exploring the integrals of such partial differential equations, this work obtains broad families of polynomial maps satisfying the conjecture in all dimensions and of arbitrarily high degrees. Furthermore, it is shown that a reformulated multiply parametrized version of the conjecture in all dimensions enables a separation of the Jacobian equation into a system of subequations which may be integrated systematically rendering a settlement of the parametrized Jacobian problem in this context.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134862"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Jacobian conjecture and integrability of associated partial differential equations\",\"authors\":\"Yisong Yang\",\"doi\":\"10.1016/j.physd.2025.134862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Jacobian conjecture over a field of characteristic zero is considered directly in view of the nonlinear partial differential equations it is associated with. Exploring the integrals of such partial differential equations, this work obtains broad families of polynomial maps satisfying the conjecture in all dimensions and of arbitrarily high degrees. Furthermore, it is shown that a reformulated multiply parametrized version of the conjecture in all dimensions enables a separation of the Jacobian equation into a system of subequations which may be integrated systematically rendering a settlement of the parametrized Jacobian problem in this context.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"482 \",\"pages\":\"Article 134862\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003392\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003392","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

从特征为零的域上的雅可比猜想所涉及的非线性偏微分方程出发,直接考虑了雅可比猜想。通过对这类偏微分方程的积分进行探索,得到了在所有维度和任意高度度上满足猜想的多项式映射的大族。进一步证明了该猜想在所有维度上的重公式化的多重参数化版本,使得雅可比方程可以分离为一个子方程系统,这些子方程可以系统地集成,从而在这种情况下解决了参数化雅可比问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Jacobian conjecture and integrability of associated partial differential equations
The Jacobian conjecture over a field of characteristic zero is considered directly in view of the nonlinear partial differential equations it is associated with. Exploring the integrals of such partial differential equations, this work obtains broad families of polynomial maps satisfying the conjecture in all dimensions and of arbitrarily high degrees. Furthermore, it is shown that a reformulated multiply parametrized version of the conjecture in all dimensions enables a separation of the Jacobian equation into a system of subequations which may be integrated systematically rendering a settlement of the parametrized Jacobian problem in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信