二氧化硅对太古宙海洋中蓝藻和铁(III)还原菌在铁循环过程中形成的矿物特性的影响

IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Carolin L. Dreher , Manuel Schad , Jan-Peter Duda , Stefan Fischer , Jeremiah Shuster , Yuhao Li , Kurt O. Konhauser , Andreas Kappler
{"title":"二氧化硅对太古宙海洋中蓝藻和铁(III)还原菌在铁循环过程中形成的矿物特性的影响","authors":"Carolin L. Dreher ,&nbsp;Manuel Schad ,&nbsp;Jan-Peter Duda ,&nbsp;Stefan Fischer ,&nbsp;Jeremiah Shuster ,&nbsp;Yuhao Li ,&nbsp;Kurt O. Konhauser ,&nbsp;Andreas Kappler","doi":"10.1016/j.gca.2025.07.023","DOIUrl":null,"url":null,"abstract":"<div><div>Banded Iron Formations (BIF) are iron- and silica-rich marine sediments deposited between 3.8 and 1.85 Ga. With the evolution of cyanobacteria, iron cycling via abiotic Fe(II) oxidation with O<sub>2</sub> produced by cyanobacteria and Fe(III) reduction by Fe(III)-reducing microorganisms is hypothesized to be responsible for BIF mineral deposition and transformation both in the water column and in the resulting sedimentary deposits. However, the impact of silica on iron mineralogy during microbially influenced iron cycling has not been determined experimentally under relevant ancient conditions. Hence, we set up batch incubation experiments with different concentrations of silica (0–2.2 mM) in the presence of varying concentrations of Fe(II) (0.5–5 mM), a marine cyanobacterium (<em>Synechococcus</em> sp. PCC 7002) and a marine dissimilatory Fe(III)-reducer (<em>Shewanella colwelliana</em>). We found that the fluctuation between microbial production of O<sub>2</sub> (cyanobacteria) and the activity of Fe(III)-reducing bacteria led to alternating Fe(II) oxidation and Fe(III) reduction and the precipitation of various Fe(II)- and Fe(III)-bearing minerals. Using a combination of X-ray diffraction and <sup>57</sup>Fe Moessbauer spectroscopy we identified poorly crystalline Fe(III)-bearing minerals (e.g., ferrihydrite), and the well crystalline ones (e.g., goethite, and lepidocrocite) in the absence of silica. Fe minerals precipitated in the presence of silica showed more pronounced reflections in µXRD, indicating higher crystallinity, while <sup>57</sup>Fe Moessbauer spectroscopy suggested the formation of Fe(II) silicate minerals and Fe(III) (oxyhydr)oxide minerals associated with silica. Furthermore, the presence of silica led to higher oxidation and reduction rates but more incomplete Fe(II) oxidation, while the reduction extent was higher in the presence of silica. In summary, our experiments showed that the presence of silica clearly affects Fe cycling and Fe mineral (trans)formation by cyanobacteria and Fe(III)-reducing bacteria, with relevance for the deposition of Precambrian Banded Iron Formations.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"404 ","pages":"Pages 202-222"},"PeriodicalIF":5.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of silica on the identity of minerals formed in Archean oceans during Fe cycling by cyanobacteria and iron(III)-reducing bacteria\",\"authors\":\"Carolin L. Dreher ,&nbsp;Manuel Schad ,&nbsp;Jan-Peter Duda ,&nbsp;Stefan Fischer ,&nbsp;Jeremiah Shuster ,&nbsp;Yuhao Li ,&nbsp;Kurt O. Konhauser ,&nbsp;Andreas Kappler\",\"doi\":\"10.1016/j.gca.2025.07.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Banded Iron Formations (BIF) are iron- and silica-rich marine sediments deposited between 3.8 and 1.85 Ga. With the evolution of cyanobacteria, iron cycling via abiotic Fe(II) oxidation with O<sub>2</sub> produced by cyanobacteria and Fe(III) reduction by Fe(III)-reducing microorganisms is hypothesized to be responsible for BIF mineral deposition and transformation both in the water column and in the resulting sedimentary deposits. However, the impact of silica on iron mineralogy during microbially influenced iron cycling has not been determined experimentally under relevant ancient conditions. Hence, we set up batch incubation experiments with different concentrations of silica (0–2.2 mM) in the presence of varying concentrations of Fe(II) (0.5–5 mM), a marine cyanobacterium (<em>Synechococcus</em> sp. PCC 7002) and a marine dissimilatory Fe(III)-reducer (<em>Shewanella colwelliana</em>). We found that the fluctuation between microbial production of O<sub>2</sub> (cyanobacteria) and the activity of Fe(III)-reducing bacteria led to alternating Fe(II) oxidation and Fe(III) reduction and the precipitation of various Fe(II)- and Fe(III)-bearing minerals. Using a combination of X-ray diffraction and <sup>57</sup>Fe Moessbauer spectroscopy we identified poorly crystalline Fe(III)-bearing minerals (e.g., ferrihydrite), and the well crystalline ones (e.g., goethite, and lepidocrocite) in the absence of silica. Fe minerals precipitated in the presence of silica showed more pronounced reflections in µXRD, indicating higher crystallinity, while <sup>57</sup>Fe Moessbauer spectroscopy suggested the formation of Fe(II) silicate minerals and Fe(III) (oxyhydr)oxide minerals associated with silica. Furthermore, the presence of silica led to higher oxidation and reduction rates but more incomplete Fe(II) oxidation, while the reduction extent was higher in the presence of silica. In summary, our experiments showed that the presence of silica clearly affects Fe cycling and Fe mineral (trans)formation by cyanobacteria and Fe(III)-reducing bacteria, with relevance for the deposition of Precambrian Banded Iron Formations.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"404 \",\"pages\":\"Pages 202-222\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016703725003941\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016703725003941","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

带状铁组(BIF)是沉积在3.8 ~ 1.85 Ga之间的富含铁和硅的海相沉积物。随着蓝藻的进化,通过蓝藻产生的非生物Fe(II)与O2氧化以及Fe(III)还原微生物对Fe(III)的还原,假设铁循环是水柱和由此产生的沉积物中BIF矿物沉积和转化的原因。然而,在相关的古代条件下,微生物影响铁循环过程中二氧化硅对铁矿物学的影响尚未得到实验确定。因此,我们用不同浓度的二氧化硅(0-2.2 mM)在不同浓度的铁(II) (0.5-5 mM)、一种海洋蓝藻(聚藻球菌sp. PCC 7002)和一种海洋差异化铁(III)减色剂(希瓦氏菌)存在下进行了批量培养实验。我们发现微生物生成O2(蓝藻)和铁(III)还原菌活性之间的波动导致铁(II)氧化和铁(III)还原交替发生,并沉淀出各种含铁(II)和含铁(III)矿物。利用x射线衍射和57Fe Moessbauer光谱的结合,我们确定了在没有二氧化硅的情况下,结晶性差的含Fe(III)矿物(如铁水合石)和结晶性好的矿物(如针铁矿和绢云母)。在二氧化硅存在下沉淀的Fe矿物在µXRD上的反射更明显,表明结晶度更高,而57Fe Moessbauer光谱表明与二氧化硅伴生的Fe(II)硅酸盐矿物和Fe(III)(氧合)氧化物矿物的形成。此外,二氧化硅的存在导致更高的氧化还原速率,但更多的Fe(II)不完全氧化,而二氧化硅存在时的还原程度更高。综上所述,我们的实验表明,二氧化硅的存在明显影响了蓝藻和铁(III)还原菌的铁循环和铁矿物(转化)形成,与前寒武纪带状铁组的沉积有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of silica on the identity of minerals formed in Archean oceans during Fe cycling by cyanobacteria and iron(III)-reducing bacteria
Banded Iron Formations (BIF) are iron- and silica-rich marine sediments deposited between 3.8 and 1.85 Ga. With the evolution of cyanobacteria, iron cycling via abiotic Fe(II) oxidation with O2 produced by cyanobacteria and Fe(III) reduction by Fe(III)-reducing microorganisms is hypothesized to be responsible for BIF mineral deposition and transformation both in the water column and in the resulting sedimentary deposits. However, the impact of silica on iron mineralogy during microbially influenced iron cycling has not been determined experimentally under relevant ancient conditions. Hence, we set up batch incubation experiments with different concentrations of silica (0–2.2 mM) in the presence of varying concentrations of Fe(II) (0.5–5 mM), a marine cyanobacterium (Synechococcus sp. PCC 7002) and a marine dissimilatory Fe(III)-reducer (Shewanella colwelliana). We found that the fluctuation between microbial production of O2 (cyanobacteria) and the activity of Fe(III)-reducing bacteria led to alternating Fe(II) oxidation and Fe(III) reduction and the precipitation of various Fe(II)- and Fe(III)-bearing minerals. Using a combination of X-ray diffraction and 57Fe Moessbauer spectroscopy we identified poorly crystalline Fe(III)-bearing minerals (e.g., ferrihydrite), and the well crystalline ones (e.g., goethite, and lepidocrocite) in the absence of silica. Fe minerals precipitated in the presence of silica showed more pronounced reflections in µXRD, indicating higher crystallinity, while 57Fe Moessbauer spectroscopy suggested the formation of Fe(II) silicate minerals and Fe(III) (oxyhydr)oxide minerals associated with silica. Furthermore, the presence of silica led to higher oxidation and reduction rates but more incomplete Fe(II) oxidation, while the reduction extent was higher in the presence of silica. In summary, our experiments showed that the presence of silica clearly affects Fe cycling and Fe mineral (trans)formation by cyanobacteria and Fe(III)-reducing bacteria, with relevance for the deposition of Precambrian Banded Iron Formations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochimica et Cosmochimica Acta
Geochimica et Cosmochimica Acta 地学-地球化学与地球物理
CiteScore
9.60
自引率
14.00%
发文量
437
审稿时长
6 months
期刊介绍: Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes: 1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids 2). Igneous and metamorphic petrology 3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth 4). Organic geochemistry 5). Isotope geochemistry 6). Meteoritics and meteorite impacts 7). Lunar science; and 8). Planetary geochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信