{"title":"随机流行病模型在线推理的顺序蒙特卡罗平方","authors":"Dhorasso Temfack, Jason Wyse","doi":"10.1016/j.epidem.2025.100847","DOIUrl":null,"url":null,"abstract":"<div><div>Effective epidemic modeling and surveillance require computationally efficient methods that can continuously update parameter estimates as new data becomes available. This paper explores the application of an online variant of Sequential Monte Carlo Squared (O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) to the stochastic Susceptible–Exposed–Infectious–Removed (SEIR) model for real-time epidemic tracking. The advantage of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> lies in its ability to update parameter estimates using a particle Metropolis–Hastings kernel by only utilizing a fixed window of recent observations. This feature enables timely parameter updates and significantly enhances computational efficiency compared to standard SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which requires processing all past observations. First, we demonstrate the efficiency of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> on simulated epidemic data, where both the true parameter values and the observation process are known. We then make an application to a real-world COVID-19 dataset from Ireland, successfully tracking the epidemic and estimating a time-dependent reproduction number of the disease. Our results show that O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> provides accurate online estimates of both static and dynamic epidemiological parameters while substantially reducing computational cost. These findings highlight the potential of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> for real-time epidemic monitoring and supporting adaptive public health interventions.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"52 ","pages":"Article 100847"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Monte Carlo Squared for online inference in stochastic epidemic models\",\"authors\":\"Dhorasso Temfack, Jason Wyse\",\"doi\":\"10.1016/j.epidem.2025.100847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective epidemic modeling and surveillance require computationally efficient methods that can continuously update parameter estimates as new data becomes available. This paper explores the application of an online variant of Sequential Monte Carlo Squared (O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>) to the stochastic Susceptible–Exposed–Infectious–Removed (SEIR) model for real-time epidemic tracking. The advantage of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> lies in its ability to update parameter estimates using a particle Metropolis–Hastings kernel by only utilizing a fixed window of recent observations. This feature enables timely parameter updates and significantly enhances computational efficiency compared to standard SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, which requires processing all past observations. First, we demonstrate the efficiency of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> on simulated epidemic data, where both the true parameter values and the observation process are known. We then make an application to a real-world COVID-19 dataset from Ireland, successfully tracking the epidemic and estimating a time-dependent reproduction number of the disease. Our results show that O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> provides accurate online estimates of both static and dynamic epidemiological parameters while substantially reducing computational cost. These findings highlight the potential of O-SMC<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> for real-time epidemic monitoring and supporting adaptive public health interventions.</div></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"52 \",\"pages\":\"Article 100847\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436525000350\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000350","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Sequential Monte Carlo Squared for online inference in stochastic epidemic models
Effective epidemic modeling and surveillance require computationally efficient methods that can continuously update parameter estimates as new data becomes available. This paper explores the application of an online variant of Sequential Monte Carlo Squared (O-SMC) to the stochastic Susceptible–Exposed–Infectious–Removed (SEIR) model for real-time epidemic tracking. The advantage of O-SMC lies in its ability to update parameter estimates using a particle Metropolis–Hastings kernel by only utilizing a fixed window of recent observations. This feature enables timely parameter updates and significantly enhances computational efficiency compared to standard SMC, which requires processing all past observations. First, we demonstrate the efficiency of O-SMC on simulated epidemic data, where both the true parameter values and the observation process are known. We then make an application to a real-world COVID-19 dataset from Ireland, successfully tracking the epidemic and estimating a time-dependent reproduction number of the disease. Our results show that O-SMC provides accurate online estimates of both static and dynamic epidemiological parameters while substantially reducing computational cost. These findings highlight the potential of O-SMC for real-time epidemic monitoring and supporting adaptive public health interventions.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.