改进了误差估计的Rosenbrock方法和复步逼近的Jacobian方法

IF 1.3 Q2 MATHEMATICS, APPLIED
Juan Diego Pulgarín Rivera , Daniel Turizo , Elias D. Nino-Ruiz , Oscar Danilo Montoya
{"title":"改进了误差估计的Rosenbrock方法和复步逼近的Jacobian方法","authors":"Juan Diego Pulgarín Rivera ,&nbsp;Daniel Turizo ,&nbsp;Elias D. Nino-Ruiz ,&nbsp;Oscar Danilo Montoya","doi":"10.1016/j.rinam.2025.100629","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an A-stable one-stage Rosenbrock method for the solution of Ordinary Differential Equations (ODEs). In this method, Jacobians are approximated via complex step finite differences. An asymptotically accurate estimator of the truncation error is also provided. This error estimator can be employed to control step sizes and to perform extrapolation, which increases the accuracy of the method and yields L-stability. Numerical experiments are conducted to assess the performance of the proposed method. ODE solvers and several stiff ODE problems from the current literature are employed as references during experiments. Experimental results reveal that the proposed method exhibits superior performance with respect to the other compared methods, especially for crude error tolerances.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100629"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Rosenbrock method with error estimator and Jacobian approximation using complex step\",\"authors\":\"Juan Diego Pulgarín Rivera ,&nbsp;Daniel Turizo ,&nbsp;Elias D. Nino-Ruiz ,&nbsp;Oscar Danilo Montoya\",\"doi\":\"10.1016/j.rinam.2025.100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes an A-stable one-stage Rosenbrock method for the solution of Ordinary Differential Equations (ODEs). In this method, Jacobians are approximated via complex step finite differences. An asymptotically accurate estimator of the truncation error is also provided. This error estimator can be employed to control step sizes and to perform extrapolation, which increases the accuracy of the method and yields L-stability. Numerical experiments are conducted to assess the performance of the proposed method. ODE solvers and several stiff ODE problems from the current literature are employed as references during experiments. Experimental results reveal that the proposed method exhibits superior performance with respect to the other compared methods, especially for crude error tolerances.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"27 \",\"pages\":\"Article 100629\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了求解常微分方程的一种a稳定单阶段Rosenbrock方法。在该方法中,雅可比矩阵是通过复阶有限差分逼近的。给出了截断误差的渐近精确估计。该误差估计器可用于控制步长和执行外推,从而提高了方法的精度并产生l稳定性。数值实验验证了该方法的性能。在实验中引用了现有文献中的ODE求解器和几个僵硬的ODE问题。实验结果表明,该方法在粗误差容限方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Rosenbrock method with error estimator and Jacobian approximation using complex step
This paper proposes an A-stable one-stage Rosenbrock method for the solution of Ordinary Differential Equations (ODEs). In this method, Jacobians are approximated via complex step finite differences. An asymptotically accurate estimator of the truncation error is also provided. This error estimator can be employed to control step sizes and to perform extrapolation, which increases the accuracy of the method and yields L-stability. Numerical experiments are conducted to assess the performance of the proposed method. ODE solvers and several stiff ODE problems from the current literature are employed as references during experiments. Experimental results reveal that the proposed method exhibits superior performance with respect to the other compared methods, especially for crude error tolerances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信