偶极EPR光谱定量蛋白质构象群的最新进展

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Reza Dastvan , Stefan Stoll
{"title":"偶极EPR光谱定量蛋白质构象群的最新进展","authors":"Reza Dastvan ,&nbsp;Stefan Stoll","doi":"10.1016/j.sbi.2025.103139","DOIUrl":null,"url":null,"abstract":"<div><div>This perspective highlights recent applications and technological progress in dipolar electron paramagnetic resonance (EPR) spectroscopy, including double electron–electron resonance (DEER) spectroscopy. These methods provide nanoscale distance distributions between site-specific spin labels in biomacromolecules. The resulting data are particularly well suited for quantifying the structure and energetics of conformational ensembles of multi-state and flexible proteins. Recent applications span a wide range of systems and are accompanied by innovations in spin labeling, deuteration, in-cell measurements, integrative multi-technique approaches, and novel computational modeling methods combined with structure prediction tools.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103139"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in quantifying protein conformational ensembles with dipolar EPR spectroscopy\",\"authors\":\"Reza Dastvan ,&nbsp;Stefan Stoll\",\"doi\":\"10.1016/j.sbi.2025.103139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This perspective highlights recent applications and technological progress in dipolar electron paramagnetic resonance (EPR) spectroscopy, including double electron–electron resonance (DEER) spectroscopy. These methods provide nanoscale distance distributions between site-specific spin labels in biomacromolecules. The resulting data are particularly well suited for quantifying the structure and energetics of conformational ensembles of multi-state and flexible proteins. Recent applications span a wide range of systems and are accompanied by innovations in spin labeling, deuteration, in-cell measurements, integrative multi-technique approaches, and novel computational modeling methods combined with structure prediction tools.</div></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"94 \",\"pages\":\"Article 103139\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X25001575\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001575","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍了偶极电子顺磁共振(EPR)光谱学,包括双电子-电子共振(DEER)光谱学的最新应用和技术进展。这些方法提供了生物大分子中位点特异性自旋标记之间的纳米级距离分布。所得数据特别适合于量化多态和柔性蛋白质的构象集合体的结构和能量学。最近的应用跨越了广泛的系统,并伴随着自旋标记、氘化、细胞内测量、综合多技术方法和结合结构预测工具的新型计算建模方法的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in quantifying protein conformational ensembles with dipolar EPR spectroscopy
This perspective highlights recent applications and technological progress in dipolar electron paramagnetic resonance (EPR) spectroscopy, including double electron–electron resonance (DEER) spectroscopy. These methods provide nanoscale distance distributions between site-specific spin labels in biomacromolecules. The resulting data are particularly well suited for quantifying the structure and energetics of conformational ensembles of multi-state and flexible proteins. Recent applications span a wide range of systems and are accompanied by innovations in spin labeling, deuteration, in-cell measurements, integrative multi-technique approaches, and novel computational modeling methods combined with structure prediction tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信