Alessandro A.L. Araújo , Hugo A. Dantas Medeiros , Dival de Brito Guerra-Neto , Anderson A. Jesus , Eduardo L. Barros Neto , Osvaldo Chiavone-Filho
{"title":"高达30兆帕的水聚乙二醇单十二烷基醚系统的溶解度行为:测量和相关","authors":"Alessandro A.L. Araújo , Hugo A. Dantas Medeiros , Dival de Brito Guerra-Neto , Anderson A. Jesus , Eduardo L. Barros Neto , Osvaldo Chiavone-Filho","doi":"10.1016/j.jct.2025.107566","DOIUrl":null,"url":null,"abstract":"<div><div>Nonionic surfactant aqueous solutions exhibit phase separation into two distinct liquid micellar phases: a dilute phase with a low surfactant concentration and a surfactant-rich phase, known as coacervate. The application of these surfactants in solute extraction processes from aqueous media has been increasing, highlighting the importance of understanding their solubility behavior. This work reports cloud point data of a systematic series of binary aqueous mixtures of polyethylene glycol monododecyl ethers, ranging the degree of ethoxylation (6, 7, 8, 9, and 10). The cloud points were detected in a high-pressure apparatus by monitoring the turbidity appearance and disappearance of the mixtures as the temperature changed at a constant rate of 0.1 K/min, under constant pressures up to 30 MPa (4 isobarics). The miscibility behavior of the studied systems was positively affected by both the degree of ethoxylation and the applied pressure. The Flory-Huggins (FH) equation was applied to correlate the solubility curves, allowing the generation of pseudo-experimental tie lines across the observed temperature range. These tie lines were further correlated using the nonrandom two-liquid (NRTL) model with a linear temperature dependence for the interaction parameters. The Flory-Huggins and NRTL models showed agreement within the bounds of experimental uncertainty, with root-mean-square deviations (RMSD) of 0.5 K for temperature and 0.1 % for composition, respectively. Feasible process applications of these models, including enhanced oil recovery through chemical flooding, are indicated.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"211 ","pages":"Article 107566"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubility behavior for aqueous polyethylene glycol monododecyl ether systems up to 30 MPa: measurement and correlation\",\"authors\":\"Alessandro A.L. Araújo , Hugo A. Dantas Medeiros , Dival de Brito Guerra-Neto , Anderson A. Jesus , Eduardo L. Barros Neto , Osvaldo Chiavone-Filho\",\"doi\":\"10.1016/j.jct.2025.107566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nonionic surfactant aqueous solutions exhibit phase separation into two distinct liquid micellar phases: a dilute phase with a low surfactant concentration and a surfactant-rich phase, known as coacervate. The application of these surfactants in solute extraction processes from aqueous media has been increasing, highlighting the importance of understanding their solubility behavior. This work reports cloud point data of a systematic series of binary aqueous mixtures of polyethylene glycol monododecyl ethers, ranging the degree of ethoxylation (6, 7, 8, 9, and 10). The cloud points were detected in a high-pressure apparatus by monitoring the turbidity appearance and disappearance of the mixtures as the temperature changed at a constant rate of 0.1 K/min, under constant pressures up to 30 MPa (4 isobarics). The miscibility behavior of the studied systems was positively affected by both the degree of ethoxylation and the applied pressure. The Flory-Huggins (FH) equation was applied to correlate the solubility curves, allowing the generation of pseudo-experimental tie lines across the observed temperature range. These tie lines were further correlated using the nonrandom two-liquid (NRTL) model with a linear temperature dependence for the interaction parameters. The Flory-Huggins and NRTL models showed agreement within the bounds of experimental uncertainty, with root-mean-square deviations (RMSD) of 0.5 K for temperature and 0.1 % for composition, respectively. Feasible process applications of these models, including enhanced oil recovery through chemical flooding, are indicated.</div></div>\",\"PeriodicalId\":54867,\"journal\":{\"name\":\"Journal of Chemical Thermodynamics\",\"volume\":\"211 \",\"pages\":\"Article 107566\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002196142500120X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002196142500120X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Solubility behavior for aqueous polyethylene glycol monododecyl ether systems up to 30 MPa: measurement and correlation
Nonionic surfactant aqueous solutions exhibit phase separation into two distinct liquid micellar phases: a dilute phase with a low surfactant concentration and a surfactant-rich phase, known as coacervate. The application of these surfactants in solute extraction processes from aqueous media has been increasing, highlighting the importance of understanding their solubility behavior. This work reports cloud point data of a systematic series of binary aqueous mixtures of polyethylene glycol monododecyl ethers, ranging the degree of ethoxylation (6, 7, 8, 9, and 10). The cloud points were detected in a high-pressure apparatus by monitoring the turbidity appearance and disappearance of the mixtures as the temperature changed at a constant rate of 0.1 K/min, under constant pressures up to 30 MPa (4 isobarics). The miscibility behavior of the studied systems was positively affected by both the degree of ethoxylation and the applied pressure. The Flory-Huggins (FH) equation was applied to correlate the solubility curves, allowing the generation of pseudo-experimental tie lines across the observed temperature range. These tie lines were further correlated using the nonrandom two-liquid (NRTL) model with a linear temperature dependence for the interaction parameters. The Flory-Huggins and NRTL models showed agreement within the bounds of experimental uncertainty, with root-mean-square deviations (RMSD) of 0.5 K for temperature and 0.1 % for composition, respectively. Feasible process applications of these models, including enhanced oil recovery through chemical flooding, are indicated.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.