时变系统的输入功率-状态稳定性

IF 5.9 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hernan Haimovich , Shenyu Liu , Antonio Russo , Jose L. Mancilla-Aguilar
{"title":"时变系统的输入功率-状态稳定性","authors":"Hernan Haimovich ,&nbsp;Shenyu Liu ,&nbsp;Antonio Russo ,&nbsp;Jose L. Mancilla-Aguilar","doi":"10.1016/j.automatica.2025.112552","DOIUrl":null,"url":null,"abstract":"<div><div>When the state of a system may remain bounded even if both the input amplitude and energy are unbounded, then the state bounds given by the standard input-to-state stability (ISS) and integral-ISS (iISS) properties may provide no useful information. This paper considers an ISS-related concept suitable in such a case: input-power-to-state stability (IPSS). Necessary and sufficient conditions for IPSS are developed for time-varying systems under very mild assumptions on the dynamics. More precisely, it is shown that (a) the existence of a dissipation-form ISS-Lyapunov function implies IPSS, but not necessarily that of an implication-form one, (b) iISS with exponential class-<span><math><mi>KL</mi></math></span> function implies IPSS, and (c) ISS and stronger assumptions on the dynamics imply the existence of a dissipation-form ISS-Lyapunov function and hence IPSS. The latter result is based on a converse Lyapunov theorem for time-varying systems whose dynamics (i.e. state derivative) is not necessarily continuous with respect to time.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"182 ","pages":"Article 112552"},"PeriodicalIF":5.9000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input-power-to-state stability of time-varying systems\",\"authors\":\"Hernan Haimovich ,&nbsp;Shenyu Liu ,&nbsp;Antonio Russo ,&nbsp;Jose L. Mancilla-Aguilar\",\"doi\":\"10.1016/j.automatica.2025.112552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When the state of a system may remain bounded even if both the input amplitude and energy are unbounded, then the state bounds given by the standard input-to-state stability (ISS) and integral-ISS (iISS) properties may provide no useful information. This paper considers an ISS-related concept suitable in such a case: input-power-to-state stability (IPSS). Necessary and sufficient conditions for IPSS are developed for time-varying systems under very mild assumptions on the dynamics. More precisely, it is shown that (a) the existence of a dissipation-form ISS-Lyapunov function implies IPSS, but not necessarily that of an implication-form one, (b) iISS with exponential class-<span><math><mi>KL</mi></math></span> function implies IPSS, and (c) ISS and stronger assumptions on the dynamics imply the existence of a dissipation-form ISS-Lyapunov function and hence IPSS. The latter result is based on a converse Lyapunov theorem for time-varying systems whose dynamics (i.e. state derivative) is not necessarily continuous with respect to time.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"182 \",\"pages\":\"Article 112552\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825004479\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825004479","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

当一个系统的状态可以保持有界,即使输入振幅和能量都是无界的,那么由标准输入-状态稳定性(ISS)和积分-状态稳定性(iISS)属性给出的状态界可能没有提供有用的信息。本文考虑了一个适用于这种情况的iss相关概念:输入功率到状态稳定性(IPSS)。在非常温和的动力学假设下,给出了时变系统IPSS的充分必要条件。更准确地说,它表明(a)耗散形式的ISS- lyapunov函数的存在意味着IPSS,但不一定是隐含形式的函数,(b)具有指数类kl函数的iISS意味着IPSS, (c) ISS和更强的动力学假设意味着耗散形式的ISS- lyapunov函数的存在,因此IPSS。后一个结果是基于时变系统的逆李雅普诺夫定理,其动力学(即状态导数)不一定是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Input-power-to-state stability of time-varying systems
When the state of a system may remain bounded even if both the input amplitude and energy are unbounded, then the state bounds given by the standard input-to-state stability (ISS) and integral-ISS (iISS) properties may provide no useful information. This paper considers an ISS-related concept suitable in such a case: input-power-to-state stability (IPSS). Necessary and sufficient conditions for IPSS are developed for time-varying systems under very mild assumptions on the dynamics. More precisely, it is shown that (a) the existence of a dissipation-form ISS-Lyapunov function implies IPSS, but not necessarily that of an implication-form one, (b) iISS with exponential class-KL function implies IPSS, and (c) ISS and stronger assumptions on the dynamics imply the existence of a dissipation-form ISS-Lyapunov function and hence IPSS. The latter result is based on a converse Lyapunov theorem for time-varying systems whose dynamics (i.e. state derivative) is not necessarily continuous with respect to time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信