全稳定闭环响应的参数化:从理论到神经网络控制设计

IF 10.7 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Clara Lucía Galimberti, Luca Furieri, Giancarlo Ferrari-Trecate
{"title":"全稳定闭环响应的参数化:从理论到神经网络控制设计","authors":"Clara Lucía Galimberti,&nbsp;Luca Furieri,&nbsp;Giancarlo Ferrari-Trecate","doi":"10.1016/j.arcontrol.2025.101012","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity of modern control systems necessitates architectures that achieve high performance while ensuring robust stability, particularly for nonlinear systems. In this work, we tackle the challenge of designing output-feedback controllers to boost the performance of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-stable discrete-time nonlinear systems while preserving closed-loop stability from external disturbances to input and output channels. Leveraging operator theory and neural network representations, we parametrize the achievable closed-loop maps for a given system and propose novel parametrizations of all <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-stabilizing controllers, unifying frameworks such as nonlinear Youla parametrization and internal model control. Contributing to a rapidly growing research line, our approach enables unconstrained optimization exclusively over stabilizing controllers and provides sufficient conditions to ensure robustness against model mismatch. Additionally, our methods reveal that stronger notions of stability can be imposed on the closed-loop maps if disturbance realizations are available after one time step. Last, our approaches are compatible with the design of nonlinear distributed controllers. Numerical experiments on cooperative robotics demonstrate the flexibility of the proposed framework, allowing cost functions to be freely designed for achieving complex behaviors while preserving stability.</div></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"60 ","pages":"Article 101012"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametrizations of all stable closed-loop responses: From theory to neural network control design\",\"authors\":\"Clara Lucía Galimberti,&nbsp;Luca Furieri,&nbsp;Giancarlo Ferrari-Trecate\",\"doi\":\"10.1016/j.arcontrol.2025.101012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complexity of modern control systems necessitates architectures that achieve high performance while ensuring robust stability, particularly for nonlinear systems. In this work, we tackle the challenge of designing output-feedback controllers to boost the performance of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-stable discrete-time nonlinear systems while preserving closed-loop stability from external disturbances to input and output channels. Leveraging operator theory and neural network representations, we parametrize the achievable closed-loop maps for a given system and propose novel parametrizations of all <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-stabilizing controllers, unifying frameworks such as nonlinear Youla parametrization and internal model control. Contributing to a rapidly growing research line, our approach enables unconstrained optimization exclusively over stabilizing controllers and provides sufficient conditions to ensure robustness against model mismatch. Additionally, our methods reveal that stronger notions of stability can be imposed on the closed-loop maps if disturbance realizations are available after one time step. Last, our approaches are compatible with the design of nonlinear distributed controllers. Numerical experiments on cooperative robotics demonstrate the flexibility of the proposed framework, allowing cost functions to be freely designed for achieving complex behaviors while preserving stability.</div></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"60 \",\"pages\":\"Article 101012\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578825000276\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578825000276","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现代控制系统的复杂性需要在确保鲁棒稳定性的同时实现高性能的体系结构,特别是对于非线性系统。在这项工作中,我们解决了设计输出反馈控制器的挑战,以提高p稳定离散时间非线性系统的性能,同时保持输入和输出通道免受外部干扰的闭环稳定性。利用算子理论和神经网络表示,我们对给定系统的可实现闭环映射进行了参数化,并提出了所有稳定控制器的新参数化,统一了非线性Youla参数化和内模控制等框架。我们的方法促进了快速发展的研究方向,使稳定控制器的无约束优化成为可能,并提供了足够的条件来确保对模型不匹配的鲁棒性。此外,我们的方法表明,如果扰动实现在一个时间步后可用,则可以对闭环映射施加更强的稳定性概念。最后,我们的方法适用于非线性分布式控制器的设计。协作机器人的数值实验证明了该框架的灵活性,允许在保持稳定性的同时自由设计成本函数以实现复杂的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametrizations of all stable closed-loop responses: From theory to neural network control design
The complexity of modern control systems necessitates architectures that achieve high performance while ensuring robust stability, particularly for nonlinear systems. In this work, we tackle the challenge of designing output-feedback controllers to boost the performance of p-stable discrete-time nonlinear systems while preserving closed-loop stability from external disturbances to input and output channels. Leveraging operator theory and neural network representations, we parametrize the achievable closed-loop maps for a given system and propose novel parametrizations of all p-stabilizing controllers, unifying frameworks such as nonlinear Youla parametrization and internal model control. Contributing to a rapidly growing research line, our approach enables unconstrained optimization exclusively over stabilizing controllers and provides sufficient conditions to ensure robustness against model mismatch. Additionally, our methods reveal that stronger notions of stability can be imposed on the closed-loop maps if disturbance realizations are available after one time step. Last, our approaches are compatible with the design of nonlinear distributed controllers. Numerical experiments on cooperative robotics demonstrate the flexibility of the proposed framework, allowing cost functions to be freely designed for achieving complex behaviors while preserving stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信