基于学习驱动的到达和离开时间预测的飞机排序和调度的分布式鲁棒优化方法

IF 7.2 2区 管理学 Q1 MANAGEMENT
Chenliang Zhang , Zhongyi Jin , Kam K.H. Ng , Tie-Qiao Tang , Rong Tang
{"title":"基于学习驱动的到达和离开时间预测的飞机排序和调度的分布式鲁棒优化方法","authors":"Chenliang Zhang ,&nbsp;Zhongyi Jin ,&nbsp;Kam K.H. Ng ,&nbsp;Tie-Qiao Tang ,&nbsp;Rong Tang","doi":"10.1016/j.omega.2025.103415","DOIUrl":null,"url":null,"abstract":"<div><div>As air traffic demand grows, some airspace systems are nearing capacity. Optimising runway utilisation is a key strategy for increasing capacity. To enhance efficiency and robustness in aircraft sequencing and scheduling under uncertainty, we introduce two prescriptive analytics approaches. First, the estimate-then-optimise (ETO) approach uses a machine learning method to estimate probability distributions, which inform a stochastic programming (SP) model for the aircraft sequencing and scheduling problem (ASSP). However, prediction and sampling errors may affect decision quality. To mitigate this, we replace the SP model with a distributionally robust optimisation (DRO) model, proposing the estimate-then-distributionally-robust-optimise (ETDRO) approach. Given the complexity of solving DRO models, we develop decomposition methods to improve computational efficiency. Numerical experiments show that ETDRO consistently delivers high-quality decisions, outperforming benchmark optimisation approaches. Meanwhile, the proposed inexact decomposition methods significantly improve computational performance, enabling the real-world implementation of ETDRO.</div></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":"138 ","pages":"Article 103415"},"PeriodicalIF":7.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally robust optimisation approach for aircraft sequencing and scheduling with learning-driven arrival and departure time predictions\",\"authors\":\"Chenliang Zhang ,&nbsp;Zhongyi Jin ,&nbsp;Kam K.H. Ng ,&nbsp;Tie-Qiao Tang ,&nbsp;Rong Tang\",\"doi\":\"10.1016/j.omega.2025.103415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As air traffic demand grows, some airspace systems are nearing capacity. Optimising runway utilisation is a key strategy for increasing capacity. To enhance efficiency and robustness in aircraft sequencing and scheduling under uncertainty, we introduce two prescriptive analytics approaches. First, the estimate-then-optimise (ETO) approach uses a machine learning method to estimate probability distributions, which inform a stochastic programming (SP) model for the aircraft sequencing and scheduling problem (ASSP). However, prediction and sampling errors may affect decision quality. To mitigate this, we replace the SP model with a distributionally robust optimisation (DRO) model, proposing the estimate-then-distributionally-robust-optimise (ETDRO) approach. Given the complexity of solving DRO models, we develop decomposition methods to improve computational efficiency. Numerical experiments show that ETDRO consistently delivers high-quality decisions, outperforming benchmark optimisation approaches. Meanwhile, the proposed inexact decomposition methods significantly improve computational performance, enabling the real-world implementation of ETDRO.</div></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":\"138 \",\"pages\":\"Article 103415\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048325001410\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048325001410","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

随着空中交通需求的增长,一些空域系统已接近饱和。优化跑道利用率是增加运力的关键策略。为了提高不确定条件下飞机排序和调度的效率和鲁棒性,我们引入了两种规范分析方法。首先,估计-然后优化(ETO)方法使用机器学习方法来估计概率分布,从而为飞机排序和调度问题(ASSP)的随机规划(SP)模型提供信息。然而,预测和抽样误差可能会影响决策质量。为了缓解这一问题,我们用分布鲁棒优化(DRO)模型取代SP模型,提出了估计-然后分布鲁棒优化(ETDRO)方法。鉴于求解DRO模型的复杂性,我们开发了分解方法来提高计算效率。数值实验表明,ETDRO始终如一地提供高质量的决策,优于基准优化方法。同时,提出的不精确分解方法显著提高了计算性能,使ETDRO能够在现实世界中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally robust optimisation approach for aircraft sequencing and scheduling with learning-driven arrival and departure time predictions
As air traffic demand grows, some airspace systems are nearing capacity. Optimising runway utilisation is a key strategy for increasing capacity. To enhance efficiency and robustness in aircraft sequencing and scheduling under uncertainty, we introduce two prescriptive analytics approaches. First, the estimate-then-optimise (ETO) approach uses a machine learning method to estimate probability distributions, which inform a stochastic programming (SP) model for the aircraft sequencing and scheduling problem (ASSP). However, prediction and sampling errors may affect decision quality. To mitigate this, we replace the SP model with a distributionally robust optimisation (DRO) model, proposing the estimate-then-distributionally-robust-optimise (ETDRO) approach. Given the complexity of solving DRO models, we develop decomposition methods to improve computational efficiency. Numerical experiments show that ETDRO consistently delivers high-quality decisions, outperforming benchmark optimisation approaches. Meanwhile, the proposed inexact decomposition methods significantly improve computational performance, enabling the real-world implementation of ETDRO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Omega-international Journal of Management Science
Omega-international Journal of Management Science 管理科学-运筹学与管理科学
CiteScore
13.80
自引率
11.60%
发文量
130
审稿时长
56 days
期刊介绍: Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信