自动驾驶车辆与交通信号灯和标志的交互数据集

IF 14.5 Q1 TRANSPORTATION
Zheng Li , Zhipeng Bao , Haoming Meng , Haotian Shi , Qianwen Li , Handong Yao , Xiaopeng Li
{"title":"自动驾驶车辆与交通信号灯和标志的交互数据集","authors":"Zheng Li ,&nbsp;Zhipeng Bao ,&nbsp;Haoming Meng ,&nbsp;Haotian Shi ,&nbsp;Qianwen Li ,&nbsp;Handong Yao ,&nbsp;Xiaopeng Li","doi":"10.1016/j.commtr.2025.100201","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development of a comprehensive dataset capturing interactions between autonomous vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs’ behavior when interacting with traffic lights and signs. This will facilitate research on <span>AV</span> integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100201"},"PeriodicalIF":14.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction dataset of autonomous vehicles with traffic lights and signs\",\"authors\":\"Zheng Li ,&nbsp;Zhipeng Bao ,&nbsp;Haoming Meng ,&nbsp;Haotian Shi ,&nbsp;Qianwen Li ,&nbsp;Handong Yao ,&nbsp;Xiaopeng Li\",\"doi\":\"10.1016/j.commtr.2025.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the development of a comprehensive dataset capturing interactions between autonomous vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs’ behavior when interacting with traffic lights and signs. This will facilitate research on <span>AV</span> integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.</div></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":\"5 \",\"pages\":\"Article 100201\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424725000411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了一个综合数据集的开发,该数据集捕获了自动驾驶汽车(AVs)与交通控制设备(特别是交通信号灯和停车标志)之间的相互作用。我们的工作源自Waymo Motion数据集,通过提供关于自动驾驶汽车如何导航这些交通控制设备的真实轨迹数据,解决了现有文献中的一个关键空白。我们提出了一种方法,用于从Waymo Motion数据集中识别和提取相关的交互轨迹数据,其中包含超过37,000个交通灯实例和44,000个停车标志实例。我们的方法包括定义规则来识别各种交互类型,提取轨迹数据,并应用基于小波的去噪方法来平滑加速度和速度曲线并消除异常值,从而提高轨迹质量。质量评估指标表明,在本研究中获得的轨迹在所有相互作用类别中,加速度和震动剖面的异常比例减少到接近零的水平。通过公开该数据集,我们的目标是解决当前包含自动驾驶汽车与交通信号灯和标志交互行为的数据集的差距。基于整理和发布的数据集,我们可以更深入地了解自动驾驶汽车在与交通信号灯和标志交互时的行为。这将促进自动驾驶汽车整合到现有交通基础设施和网络的研究,支持更准确的行为模型和仿真工具的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction dataset of autonomous vehicles with traffic lights and signs
This study presents the development of a comprehensive dataset capturing interactions between autonomous vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs’ behavior when interacting with traffic lights and signs. This will facilitate research on AV integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信