Ying Tong, Xiang Jia, Yong Deng, Yang Liu, Jiangang Tong
{"title":"基于改进粒子群优化的混合LSTM-AM信号风暴预警研究","authors":"Ying Tong, Xiang Jia, Yong Deng, Yang Liu, Jiangang Tong","doi":"10.1049/cmu2.70074","DOIUrl":null,"url":null,"abstract":"<p>The prediction of the IP multimedia subsystem (IMS) signaling storm is crucial for ensuring the stable operation of voice over new radio (VoNR) services and enhancing operators' core competitiveness. However, the current IMS signaling storm prediction alarm function for live network systems lacks robustness, with most attention focused on equipment fault detection and network element health monitoring. To address this limitation, this paper proposes a signaling storm prediction model comprising two modules: prediction and judgment. The prediction module combines the advantages of long short-term memory (LSTM) models and an attention mechanism (AM), improving convergence and accuracy through an enhanced Particle Swarm Optimization (PSO) algorithm based on trigonometric transformation (TrigPSO). The judgment module effectively classifies predicted values into different alarm levels using K-Means. Experimental results based on data from China telecom's scientific apparatus show that the proposed model accurately predicts key indicator values, with an improved r-squared (R<sup>2</sup>) value of 0.854 compared to other models such as LSTM, LSTM-AM, LSTM-PSO, and LSTM-AM-PSO. Additionally, the k-means model performs well in experimental data validation, demonstrating its scientific validity and high efficiency.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70074","citationCount":"0","resultStr":"{\"title\":\"Research on Predicting Alarm of Signaling Storm by Hybrid LSTM-AM Optimized With Improved PSO\",\"authors\":\"Ying Tong, Xiang Jia, Yong Deng, Yang Liu, Jiangang Tong\",\"doi\":\"10.1049/cmu2.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prediction of the IP multimedia subsystem (IMS) signaling storm is crucial for ensuring the stable operation of voice over new radio (VoNR) services and enhancing operators' core competitiveness. However, the current IMS signaling storm prediction alarm function for live network systems lacks robustness, with most attention focused on equipment fault detection and network element health monitoring. To address this limitation, this paper proposes a signaling storm prediction model comprising two modules: prediction and judgment. The prediction module combines the advantages of long short-term memory (LSTM) models and an attention mechanism (AM), improving convergence and accuracy through an enhanced Particle Swarm Optimization (PSO) algorithm based on trigonometric transformation (TrigPSO). The judgment module effectively classifies predicted values into different alarm levels using K-Means. Experimental results based on data from China telecom's scientific apparatus show that the proposed model accurately predicts key indicator values, with an improved r-squared (R<sup>2</sup>) value of 0.854 compared to other models such as LSTM, LSTM-AM, LSTM-PSO, and LSTM-AM-PSO. Additionally, the k-means model performs well in experimental data validation, demonstrating its scientific validity and high efficiency.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cmu2.70074\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cmu2.70074","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
IP多媒体子系统(IMS)信令风暴的预测对于保证VoNR业务的稳定运行,提高运营商的核心竞争力至关重要。然而,目前针对现网系统的IMS信令风暴预报报警功能缺乏鲁棒性,主要集中在设备故障检测和网元健康监测上。为了解决这一问题,本文提出了一个信号风暴预测模型,该模型由预测和判断两个模块组成。该预测模块结合了长短期记忆(LSTM)模型和注意机制(AM)的优点,通过基于三角变换(TrigPSO)的增强粒子群优化(PSO)算法提高了收敛性和准确性。判断模块利用K-Means将预测值有效地划分为不同的报警级别。基于中国电信科学仪器数据的实验结果表明,该模型预测关键指标值的准确性较高,与LSTM、LSTM- am、LSTM- pso、LSTM- am - pso等模型相比,r²(R2)值提高了0.854。此外,k-means模型在实验数据验证中表现良好,证明了其科学有效性和高效率。
Research on Predicting Alarm of Signaling Storm by Hybrid LSTM-AM Optimized With Improved PSO
The prediction of the IP multimedia subsystem (IMS) signaling storm is crucial for ensuring the stable operation of voice over new radio (VoNR) services and enhancing operators' core competitiveness. However, the current IMS signaling storm prediction alarm function for live network systems lacks robustness, with most attention focused on equipment fault detection and network element health monitoring. To address this limitation, this paper proposes a signaling storm prediction model comprising two modules: prediction and judgment. The prediction module combines the advantages of long short-term memory (LSTM) models and an attention mechanism (AM), improving convergence and accuracy through an enhanced Particle Swarm Optimization (PSO) algorithm based on trigonometric transformation (TrigPSO). The judgment module effectively classifies predicted values into different alarm levels using K-Means. Experimental results based on data from China telecom's scientific apparatus show that the proposed model accurately predicts key indicator values, with an improved r-squared (R2) value of 0.854 compared to other models such as LSTM, LSTM-AM, LSTM-PSO, and LSTM-AM-PSO. Additionally, the k-means model performs well in experimental data validation, demonstrating its scientific validity and high efficiency.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf