指数调和指数及其在结构特性建模中的应用

IF 2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Kinkar Chandra Das, Manar Alharbi, Jayanta Bera
{"title":"指数调和指数及其在结构特性建模中的应用","authors":"Kinkar Chandra Das,&nbsp;Manar Alharbi,&nbsp;Jayanta Bera","doi":"10.1002/qua.70099","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation>$$ H $$</annotation>\n </semantics></math>) is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation>$$ H $$</annotation>\n </semantics></math> index of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation>$$ G $$</annotation>\n </semantics></math> is formulated as \n\n </p><div><span><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <mi>H</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>=</mo>\n <munder>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </munder>\n <mfrac>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n </mfrac>\n </mrow>\n <annotation>$$ H=H(G)=\\sum \\limits_{v_i{v}_j\\in E(G)}\\frac{2}{d_i+{d}_j} $$</annotation>\n </semantics></math></span></span><span></span></div>where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {d}_j $$</annotation>\n </semantics></math> denotes the degree of the vertex <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {v}_j $$</annotation>\n </semantics></math>. In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>) as follows: \n\n <div><span><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n <mo>=</mo>\n <mi>E</mi>\n <mi>H</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>=</mo>\n <munder>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </munder>\n <mspace></mspace>\n <msup>\n <mrow>\n <mi>e</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ EH= EH(G)=\\sum \\limits_{v_i\\kern0.3em {v}_j\\in E(G)}\\kern0.3em {e}^{\\frac{2}{d_i+{d}_j}} $$</annotation>\n </semantics></math></span></span><span></span></div>The exponential harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>) is investigated here from both chemical and mathematical perspectives. We examine the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math> index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>. Furthermore, the maximal tree for <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math> is characterized in relation to a given maximum degree.\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 17","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Harmonic Index and Its Applications in Structure Property Modeling\",\"authors\":\"Kinkar Chandra Das,&nbsp;Manar Alharbi,&nbsp;Jayanta Bera\",\"doi\":\"10.1002/qua.70099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ H $$</annotation>\\n </semantics></math>) is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ H $$</annotation>\\n </semantics></math> index of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$$ G $$</annotation>\\n </semantics></math> is formulated as \\n\\n </p><div><span><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>=</mo>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <munder>\\n <mrow>\\n <mo>∑</mo>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </munder>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation>$$ H=H(G)=\\\\sum \\\\limits_{v_i{v}_j\\\\in E(G)}\\\\frac{2}{d_i+{d}_j} $$</annotation>\\n </semantics></math></span></span><span></span></div>where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {d}_j $$</annotation>\\n </semantics></math> denotes the degree of the vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {v}_j $$</annotation>\\n </semantics></math>. In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>) as follows: \\n\\n <div><span><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <munder>\\n <mrow>\\n <mo>∑</mo>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mspace></mspace>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </munder>\\n <mspace></mspace>\\n <msup>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ EH= EH(G)=\\\\sum \\\\limits_{v_i\\\\kern0.3em {v}_j\\\\in E(G)}\\\\kern0.3em {e}^{\\\\frac{2}{d_i+{d}_j}} $$</annotation>\\n </semantics></math></span></span><span></span></div>The exponential harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>) is investigated here from both chemical and mathematical perspectives. We examine the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math> index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>. Furthermore, the maximal tree for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math> is characterized in relation to a given maximum degree.\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 17\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70099\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70099","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

拓扑指标在对称变换下不变,保持图的连通性,是数学化学的基本工具。通过捕捉内在的对称性和连通性模式,这些指数提供了分子稳定性、反应性和其他基本性质的深刻分析,使它们在化学信息学和理论化学中不可或缺。其中,谐波指数(H $$ H $$)在化学和数学中都很重要。它是对randiski指数的修正,在结构-性质关系的研究中被广泛认为是一个非常有效的不变量。图G $$ G $$的索引H $$ H $$表示为H = H (G) =∑viv j∈E (G)2d +D j $$ H=H(G)=\sum \limits_{v_i{v}_j\in E(G)}\frac{2}{d_i+{d}_j} $$其中DJ $$ {d}_j $$表示顶点v J的度数$$ {v}_j $$。近年来,各种基于指数顶点度的拓扑指数被报道。 本文将指数调和指数(E H $$ EH $$)定义为:eh = eh (g) =∑V I Vj∈E (G) E2d I+ d + j$$ EH= EH(G)=\sum \limits_{v_i\kern0.3em {v}_j\in E(G)}\kern0.3em {e}^{\frac{2}{d_i+{d}_j}} $$指数调和指数(E H $$ EH $$)在这里从化学和数学的角度进行了研究。我们通过定量结构-性质关系(QSPR)分析来检验eh $$ EH $$指数预测各种物理化学性质的能力。此外,我们描述了关于eh$$ EH $$的极值树。此外,eh$$ EH $$的极大树与给定的最大度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exponential Harmonic Index and Its Applications in Structure Property Modeling

Exponential Harmonic Index and Its Applications in Structure Property Modeling

Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index ( H $$ H $$ ) is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The H $$ H $$ index of a graph G $$ G $$ is formulated as

H = H ( G ) = v i v j E ( G ) 2 d i + d j $$ H=H(G)=\sum \limits_{v_i{v}_j\in E(G)}\frac{2}{d_i+{d}_j} $$
where d j $$ {d}_j $$ denotes the degree of the vertex v j $$ {v}_j $$ . In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index ( E H $$ EH $$ ) as follows:
E H = E H ( G ) = v i v j E ( G ) e 2 d i + d j $$ EH= EH(G)=\sum \limits_{v_i\kern0.3em {v}_j\in E(G)}\kern0.3em {e}^{\frac{2}{d_i+{d}_j}} $$
The exponential harmonic index ( E H $$ EH $$ ) is investigated here from both chemical and mathematical perspectives. We examine the E H $$ EH $$ index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to E H $$ EH $$ . Furthermore, the maximal tree for E H $$ EH $$ is characterized in relation to a given maximum degree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信