{"title":"指数调和指数及其在结构特性建模中的应用","authors":"Kinkar Chandra Das, Manar Alharbi, Jayanta Bera","doi":"10.1002/qua.70099","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation>$$ H $$</annotation>\n </semantics></math>) is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation>$$ H $$</annotation>\n </semantics></math> index of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation>$$ G $$</annotation>\n </semantics></math> is formulated as \n\n </p><div><span><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <mi>H</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>=</mo>\n <munder>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </munder>\n <mfrac>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n </mfrac>\n </mrow>\n <annotation>$$ H=H(G)=\\sum \\limits_{v_i{v}_j\\in E(G)}\\frac{2}{d_i+{d}_j} $$</annotation>\n </semantics></math></span></span><span></span></div>where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {d}_j $$</annotation>\n </semantics></math> denotes the degree of the vertex <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {v}_j $$</annotation>\n </semantics></math>. In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>) as follows: \n\n <div><span><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n <mo>=</mo>\n <mi>E</mi>\n <mi>H</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>=</mo>\n <munder>\n <mrow>\n <mo>∑</mo>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>E</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </munder>\n <mspace></mspace>\n <msup>\n <mrow>\n <mi>e</mi>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n <mo>+</mo>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>j</mi>\n </mrow>\n </msub>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ EH= EH(G)=\\sum \\limits_{v_i\\kern0.3em {v}_j\\in E(G)}\\kern0.3em {e}^{\\frac{2}{d_i+{d}_j}} $$</annotation>\n </semantics></math></span></span><span></span></div>The exponential harmonic index (<span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>) is investigated here from both chemical and mathematical perspectives. We examine the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math> index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math>. Furthermore, the maximal tree for <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$$ EH $$</annotation>\n </semantics></math> is characterized in relation to a given maximum degree.\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 17","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential Harmonic Index and Its Applications in Structure Property Modeling\",\"authors\":\"Kinkar Chandra Das, Manar Alharbi, Jayanta Bera\",\"doi\":\"10.1002/qua.70099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ H $$</annotation>\\n </semantics></math>) is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ H $$</annotation>\\n </semantics></math> index of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation>$$ G $$</annotation>\\n </semantics></math> is formulated as \\n\\n </p><div><span><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>=</mo>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <munder>\\n <mrow>\\n <mo>∑</mo>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </munder>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfrac>\\n </mrow>\\n <annotation>$$ H=H(G)=\\\\sum \\\\limits_{v_i{v}_j\\\\in E(G)}\\\\frac{2}{d_i+{d}_j} $$</annotation>\\n </semantics></math></span></span><span></span></div>where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {d}_j $$</annotation>\\n </semantics></math> denotes the degree of the vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {v}_j $$</annotation>\\n </semantics></math>. In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>) as follows: \\n\\n <div><span><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n <mo>=</mo>\\n <mi>E</mi>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <munder>\\n <mrow>\\n <mo>∑</mo>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mspace></mspace>\\n <msub>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </munder>\\n <mspace></mspace>\\n <msup>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ EH= EH(G)=\\\\sum \\\\limits_{v_i\\\\kern0.3em {v}_j\\\\in E(G)}\\\\kern0.3em {e}^{\\\\frac{2}{d_i+{d}_j}} $$</annotation>\\n </semantics></math></span></span><span></span></div>The exponential harmonic index (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>) is investigated here from both chemical and mathematical perspectives. We examine the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math> index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math>. Furthermore, the maximal tree for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mi>H</mi>\\n </mrow>\\n <annotation>$$ EH $$</annotation>\\n </semantics></math> is characterized in relation to a given maximum degree.\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 17\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70099\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70099","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
拓扑指标在对称变换下不变,保持图的连通性,是数学化学的基本工具。通过捕捉内在的对称性和连通性模式,这些指数提供了分子稳定性、反应性和其他基本性质的深刻分析,使它们在化学信息学和理论化学中不可或缺。其中,谐波指数(H $$ H $$)在化学和数学中都很重要。它是对randiski指数的修正,在结构-性质关系的研究中被广泛认为是一个非常有效的不变量。图G $$ G $$的索引H $$ H $$表示为H = H (G) =∑viv j∈E (G)2d +D j $$ H=H(G)=\sum \limits_{v_i{v}_j\in E(G)}\frac{2}{d_i+{d}_j} $$其中DJ $$ {d}_j $$表示顶点v J的度数$$ {v}_j $$。近年来,各种基于指数顶点度的拓扑指数被报道。 本文将指数调和指数(E H $$ EH $$)定义为:eh = eh (g) =∑V I Vj∈E (G) E2d I+ d + j$$ EH= EH(G)=\sum \limits_{v_i\kern0.3em {v}_j\in E(G)}\kern0.3em {e}^{\frac{2}{d_i+{d}_j}} $$指数调和指数(E H $$ EH $$)在这里从化学和数学的角度进行了研究。我们通过定量结构-性质关系(QSPR)分析来检验eh $$ EH $$指数预测各种物理化学性质的能力。此外,我们描述了关于eh$$ EH $$的极值树。此外,eh$$ EH $$的极大树与给定的最大度有关。
Exponential Harmonic Index and Its Applications in Structure Property Modeling
Topological indices, invariant under symmetry transformations that preserve a graph's connectivity, are fundamental tools in mathematical chemistry. By capturing intrinsic symmetries and connectivity patterns, these indices provide insightful analyses of molecular stability, reactivity, and other fundamental properties, making them indispensable in cheminformatics and theoretical chemistry. Among these, the harmonic index () is important in both chemistry and mathematics. It is a modification of the Randić index, widely recognized as a highly effective invariant in investigations of structure–property relationships. The index of a graph is formulated as
where denotes the degree of the vertex . In recent years, various exponential vertex-degree-based topological indices have been reported. In this paper, we define the exponential harmonic index () as follows:
The exponential harmonic index () is investigated here from both chemical and mathematical perspectives. We examine the index's ability to predict various physicochemical properties through quantitative structure-property relationship (QSPR) analysis. Additionally, we describe the extremal trees with respect to . Furthermore, the maximal tree for is characterized in relation to a given maximum degree.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.