微创手术中用于单眼深度估计的协同手术器械分割

IF 11.8 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xue Li , Wenxin Chen , Xingguang Duan , Xiaoyi Gu , Changsheng Li
{"title":"微创手术中用于单眼深度估计的协同手术器械分割","authors":"Xue Li ,&nbsp;Wenxin Chen ,&nbsp;Xingguang Duan ,&nbsp;Xiaoyi Gu ,&nbsp;Changsheng Li","doi":"10.1016/j.media.2025.103765","DOIUrl":null,"url":null,"abstract":"<div><div>Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction.</div><div>The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"107 ","pages":"Article 103765"},"PeriodicalIF":11.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery\",\"authors\":\"Xue Li ,&nbsp;Wenxin Chen ,&nbsp;Xingguang Duan ,&nbsp;Xiaoyi Gu ,&nbsp;Changsheng Li\",\"doi\":\"10.1016/j.media.2025.103765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction.</div><div>The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"107 \",\"pages\":\"Article 103765\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525003111\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525003111","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度估计对于图像引导的外科手术至关重要,特别是在微创环境中,准确的3D感知至关重要。本文提出了一个两阶段的自监督单目深度估计框架,该框架将仪器分割作为任务级别,以增强空间理解。在第一阶段,分割和深度估计模型分别在RIS、SCARED数据集上进行训练,以捕获特定于任务的表示。第二阶段,将在dVPN数据集上预测的分割掩码与RGB输入融合,指导深度预测的细化。该框架采用共享编码器和多个解码器来实现跨任务的高效特性共享。RIS、SCARED、dVPN和SERV-CT数据集上的综合实验验证了该方法的有效性和可泛化性。结果表明,分割感知深度估计提高了具有挑战性的手术场景的几何推理,包括那些有闭塞,镜面区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery

Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery

Collaborative surgical instrument segmentation for monocular depth estimation in minimally invasive surgery
Depth estimation is essential for image-guided surgical procedures, particularly in minimally invasive environments where accurate 3D perception is critical. This paper proposes a two-stage self-supervised monocular depth estimation framework that incorporates instrument segmentation as a task-level prior to enhance spatial understanding. In the first stage, segmentation and depth estimation models are trained separately on the RIS, SCARED datasets to capture task-specific representations. In the second stage, segmentation masks predicted on the dVPN dataset are fused with RGB inputs to guide the refinement of depth prediction.
The framework employs a shared encoder and multiple decoders to enable efficient feature sharing across tasks. Comprehensive experiments on the RIS, SCARED, dVPN, and SERV-CT datasets validate the effectiveness and generalizability of the proposed approach. The results demonstrate that segmentation-aware depth estimation improves geometric reasoning in challenging surgical scenes, including those with occlusions, specularities regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信