使用机器学习进行疾病检测的水稻叶片图像的综合数据集

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES
Afif Hasan , Tanvir Almas Layes , Arafat Sahin Afridi , Shakhawath Hossain Rifat , Fernaz Narin Nur , Nazmun Nessa Moon
{"title":"使用机器学习进行疾病检测的水稻叶片图像的综合数据集","authors":"Afif Hasan ,&nbsp;Tanvir Almas Layes ,&nbsp;Arafat Sahin Afridi ,&nbsp;Shakhawath Hossain Rifat ,&nbsp;Fernaz Narin Nur ,&nbsp;Nazmun Nessa Moon","doi":"10.1016/j.dib.2025.111977","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript presents a comprehensive, expert-annotated dataset comprising 19,000 rice leaf images, including 2,753 original images and 16,247 augmented images, sourced from the Bangladesh Rice Research Institute (BRRI). The dataset includes seven disease classes: Healthy (603 original images), Rice Blast (696 original images), Scald (421 original images), Leaf-folder Injury (247 original images), Insect Infestation (281 original images), Rice Stripes (266 original images), and Tungro Disease (239 original images). These images, captured under varying environmental conditions using smartphone cameras, accurately reflect real-world conditions. The images have been meticulously annotated by agronomy experts for reliable disease labeling. To enhance dataset diversity, data augmentation methods such as rotation, scaling, brightness adjustment, and horizontal flipping were systematically applied, expanding the dataset by creating additional variants from the original images. The dataset serves as a rich resource for developing machine learning models for the automatic detection of rice diseases. This initiative aims to enable early disease detection, promote sustainable farming practices, and improve food security, particularly in rice-dependent developing countries.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"62 ","pages":"Article 111977"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive dataset of rice leaf images for disease detection using machine learning\",\"authors\":\"Afif Hasan ,&nbsp;Tanvir Almas Layes ,&nbsp;Arafat Sahin Afridi ,&nbsp;Shakhawath Hossain Rifat ,&nbsp;Fernaz Narin Nur ,&nbsp;Nazmun Nessa Moon\",\"doi\":\"10.1016/j.dib.2025.111977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript presents a comprehensive, expert-annotated dataset comprising 19,000 rice leaf images, including 2,753 original images and 16,247 augmented images, sourced from the Bangladesh Rice Research Institute (BRRI). The dataset includes seven disease classes: Healthy (603 original images), Rice Blast (696 original images), Scald (421 original images), Leaf-folder Injury (247 original images), Insect Infestation (281 original images), Rice Stripes (266 original images), and Tungro Disease (239 original images). These images, captured under varying environmental conditions using smartphone cameras, accurately reflect real-world conditions. The images have been meticulously annotated by agronomy experts for reliable disease labeling. To enhance dataset diversity, data augmentation methods such as rotation, scaling, brightness adjustment, and horizontal flipping were systematically applied, expanding the dataset by creating additional variants from the original images. The dataset serves as a rich resource for developing machine learning models for the automatic detection of rice diseases. This initiative aims to enable early disease detection, promote sustainable farming practices, and improve food security, particularly in rice-dependent developing countries.</div></div>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"62 \",\"pages\":\"Article 111977\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352340925007012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925007012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了一个全面的、专家注释的数据集,包括19,000张水稻叶片图像,其中包括2753张原始图像和16247张增强图像,这些图像来自孟加拉国水稻研究所(BRRI)。该数据集包括七个疾病类别:健康(603张原始图像),稻瘟病(696张原始图像),烫伤(421张原始图像),叶夹伤(247张原始图像),虫害(281张原始图像),水稻条纹(266张原始图像)和Tungro病(239张原始图像)。这些图像是用智能手机相机在不同的环境条件下拍摄的,准确地反映了现实世界的情况。这些图像已由农学专家精心注释,以可靠地标记疾病。为了增强数据集的多样性,系统地应用了旋转、缩放、亮度调整和水平翻转等数据增强方法,通过在原始图像的基础上创建额外的变体来扩展数据集。该数据集为开发用于水稻病害自动检测的机器学习模型提供了丰富的资源。这一倡议的目的是使早期发现疾病成为可能,促进可持续的耕作方式,并改善粮食安全,特别是在依赖大米的发展中国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive dataset of rice leaf images for disease detection using machine learning
This manuscript presents a comprehensive, expert-annotated dataset comprising 19,000 rice leaf images, including 2,753 original images and 16,247 augmented images, sourced from the Bangladesh Rice Research Institute (BRRI). The dataset includes seven disease classes: Healthy (603 original images), Rice Blast (696 original images), Scald (421 original images), Leaf-folder Injury (247 original images), Insect Infestation (281 original images), Rice Stripes (266 original images), and Tungro Disease (239 original images). These images, captured under varying environmental conditions using smartphone cameras, accurately reflect real-world conditions. The images have been meticulously annotated by agronomy experts for reliable disease labeling. To enhance dataset diversity, data augmentation methods such as rotation, scaling, brightness adjustment, and horizontal flipping were systematically applied, expanding the dataset by creating additional variants from the original images. The dataset serves as a rich resource for developing machine learning models for the automatic detection of rice diseases. This initiative aims to enable early disease detection, promote sustainable farming practices, and improve food security, particularly in rice-dependent developing countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信