k-Hessian方程的C2估计和刚性定理

IF 1.5 1区 数学 Q1 MATHEMATICS
Ruijia Zhang
{"title":"k-Hessian方程的C2估计和刚性定理","authors":"Ruijia Zhang","doi":"10.1016/j.aim.2025.110488","DOIUrl":null,"url":null,"abstract":"<div><div>We derive a concavity inequality for <em>k</em>-Hessian operators under the semiconvexity condition. As an application, we establish interior estimates for semiconvex solutions to the <em>k</em>-Hessian equations with vanishing Dirichlet boundary conditions and obtain a Liouville-type result. This result confirms Chang-Yuan's conjecture [4] under the super quadratic growth condition.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110488"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C2 estimates for k-Hessian equations and a rigidity theorem\",\"authors\":\"Ruijia Zhang\",\"doi\":\"10.1016/j.aim.2025.110488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive a concavity inequality for <em>k</em>-Hessian operators under the semiconvexity condition. As an application, we establish interior estimates for semiconvex solutions to the <em>k</em>-Hessian equations with vanishing Dirichlet boundary conditions and obtain a Liouville-type result. This result confirms Chang-Yuan's conjecture [4] under the super quadratic growth condition.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110488\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082500386X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500386X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在半不对称条件下,导出了k-Hessian算子的一个凹性不等式。作为应用,我们建立了具有消失Dirichlet边界条件的k-Hessian方程半凸解的内估计,得到了一个liouville型结果。这一结果证实了昌元在超二次增长条件下的猜想[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C2 estimates for k-Hessian equations and a rigidity theorem
We derive a concavity inequality for k-Hessian operators under the semiconvexity condition. As an application, we establish interior estimates for semiconvex solutions to the k-Hessian equations with vanishing Dirichlet boundary conditions and obtain a Liouville-type result. This result confirms Chang-Yuan's conjecture [4] under the super quadratic growth condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信