估计函数数据的平滑协方差

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Uche Mbaka , James Owen Ramsay , Michelle Carey
{"title":"估计函数数据的平滑协方差","authors":"Uche Mbaka ,&nbsp;James Owen Ramsay ,&nbsp;Michelle Carey","doi":"10.1016/j.csda.2025.108255","DOIUrl":null,"url":null,"abstract":"<div><div>Functional data analysis frequently involves estimating a smooth covariance function based on observed data. This estimation is essential for understanding interactions among functions and constitutes a fundamental aspect of numerous advanced methodologies, including functional principal component analysis. Two approaches for estimating smooth covariance functions in the presence of measurement errors are introduced. The first method employs a low-rank approximation of the covariance matrix, while the second ensures positive definiteness via a Cholesky decomposition. Both approaches employ the use of penalized regression to produce smooth covariance estimates and have been validated through comprehensive simulation studies. The practical application of these methods is demonstrated through the examination of average weekly milk yields in dairy cows as well as egg-laying patterns of Mediterranean fruit flies.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"213 ","pages":"Article 108255"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating a smooth covariance for functional data\",\"authors\":\"Uche Mbaka ,&nbsp;James Owen Ramsay ,&nbsp;Michelle Carey\",\"doi\":\"10.1016/j.csda.2025.108255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Functional data analysis frequently involves estimating a smooth covariance function based on observed data. This estimation is essential for understanding interactions among functions and constitutes a fundamental aspect of numerous advanced methodologies, including functional principal component analysis. Two approaches for estimating smooth covariance functions in the presence of measurement errors are introduced. The first method employs a low-rank approximation of the covariance matrix, while the second ensures positive definiteness via a Cholesky decomposition. Both approaches employ the use of penalized regression to produce smooth covariance estimates and have been validated through comprehensive simulation studies. The practical application of these methods is demonstrated through the examination of average weekly milk yields in dairy cows as well as egg-laying patterns of Mediterranean fruit flies.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"213 \",\"pages\":\"Article 108255\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947325001318\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325001318","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

函数数据分析经常涉及基于观测数据估计平滑协方差函数。这种评估对于理解功能之间的相互作用是必不可少的,并且构成了许多高级方法的基本方面,包括功能主成分分析。介绍了在存在测量误差的情况下估计光滑协方差函数的两种方法。第一种方法采用协方差矩阵的低秩近似,而第二种方法通过Cholesky分解确保正确定性。这两种方法都使用惩罚回归来产生平滑的协方差估计,并通过全面的模拟研究进行了验证。这些方法的实际应用是通过检查奶牛的平均每周产奶量以及地中海果蝇的产卵模式来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating a smooth covariance for functional data
Functional data analysis frequently involves estimating a smooth covariance function based on observed data. This estimation is essential for understanding interactions among functions and constitutes a fundamental aspect of numerous advanced methodologies, including functional principal component analysis. Two approaches for estimating smooth covariance functions in the presence of measurement errors are introduced. The first method employs a low-rank approximation of the covariance matrix, while the second ensures positive definiteness via a Cholesky decomposition. Both approaches employ the use of penalized regression to produce smooth covariance estimates and have been validated through comprehensive simulation studies. The practical application of these methods is demonstrated through the examination of average weekly milk yields in dairy cows as well as egg-laying patterns of Mediterranean fruit flies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信