M.H. Khan , S. Jabar , T.I. Khan , H.R. Kotadia , P. Franciosa
{"title":"利用分散在Cu涂层中的Al2O3和TiC纳米颗粒控制AA6005激光焊接中的凝固裂纹","authors":"M.H. Khan , S. Jabar , T.I. Khan , H.R. Kotadia , P. Franciosa","doi":"10.1016/j.jajp.2025.100344","DOIUrl":null,"url":null,"abstract":"<div><div>Laser beam welding is a critical joining method for wrought 6xxx series aluminium (Al) alloys; however, its broader adoption is hindered by the susceptibility to solidification cracking, which undermines weld integrity and restricts the production of high-quality joints. To mitigate cracking susceptibility, this study explores a novel approach involving the use of alumina (Al<sub>2</sub>O<sub>3</sub>) and titanium carbide (TiC) nanoparticles introduced into the fusion zone of laser welded AA6005 aluminium sheets via electrophoretic deposition (CuSO<sub>4</sub> bath, ∼40 nm nanoparticles, varying concentrations/times). Microstructural analysis revealed that the incorporation of both Al<sub>2</sub>O<sub>3</sub> and TiC nanoparticles on AA6005 led to an overall 65% grain refinement, effectively preventing centreline cracking during welding. Lap shear testing demonstrated a significant improvement in joint strength, with a 10% increase for Al<sub>2</sub>O<sub>3</sub> coated samples and a 13% increase for TiC coated welds compared to the uncoated material. Notably, TiC outperformed Al<sub>2</sub>O<sub>3</sub> at higher concentrations, exhibiting more uniform dispersion with reduced agglomeration and porosity. In contrast, Al<sub>2</sub>O<sub>3</sub> showed a tendency toward particle clustering and pore formation at elevated concentrations, which limited its strengthening efficiency. This highlights the potential of nanoparticle reinforcement for enhancing the reliability and performance of laser welded 6xxx aluminium alloys.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100344"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling solidification cracks in laser beam welding of AA6005 using Al2O3 and TiC nanoparticles dispersed in a Cu coating\",\"authors\":\"M.H. Khan , S. Jabar , T.I. Khan , H.R. Kotadia , P. Franciosa\",\"doi\":\"10.1016/j.jajp.2025.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser beam welding is a critical joining method for wrought 6xxx series aluminium (Al) alloys; however, its broader adoption is hindered by the susceptibility to solidification cracking, which undermines weld integrity and restricts the production of high-quality joints. To mitigate cracking susceptibility, this study explores a novel approach involving the use of alumina (Al<sub>2</sub>O<sub>3</sub>) and titanium carbide (TiC) nanoparticles introduced into the fusion zone of laser welded AA6005 aluminium sheets via electrophoretic deposition (CuSO<sub>4</sub> bath, ∼40 nm nanoparticles, varying concentrations/times). Microstructural analysis revealed that the incorporation of both Al<sub>2</sub>O<sub>3</sub> and TiC nanoparticles on AA6005 led to an overall 65% grain refinement, effectively preventing centreline cracking during welding. Lap shear testing demonstrated a significant improvement in joint strength, with a 10% increase for Al<sub>2</sub>O<sub>3</sub> coated samples and a 13% increase for TiC coated welds compared to the uncoated material. Notably, TiC outperformed Al<sub>2</sub>O<sub>3</sub> at higher concentrations, exhibiting more uniform dispersion with reduced agglomeration and porosity. In contrast, Al<sub>2</sub>O<sub>3</sub> showed a tendency toward particle clustering and pore formation at elevated concentrations, which limited its strengthening efficiency. This highlights the potential of nanoparticle reinforcement for enhancing the reliability and performance of laser welded 6xxx aluminium alloys.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"12 \",\"pages\":\"Article 100344\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330925000652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Controlling solidification cracks in laser beam welding of AA6005 using Al2O3 and TiC nanoparticles dispersed in a Cu coating
Laser beam welding is a critical joining method for wrought 6xxx series aluminium (Al) alloys; however, its broader adoption is hindered by the susceptibility to solidification cracking, which undermines weld integrity and restricts the production of high-quality joints. To mitigate cracking susceptibility, this study explores a novel approach involving the use of alumina (Al2O3) and titanium carbide (TiC) nanoparticles introduced into the fusion zone of laser welded AA6005 aluminium sheets via electrophoretic deposition (CuSO4 bath, ∼40 nm nanoparticles, varying concentrations/times). Microstructural analysis revealed that the incorporation of both Al2O3 and TiC nanoparticles on AA6005 led to an overall 65% grain refinement, effectively preventing centreline cracking during welding. Lap shear testing demonstrated a significant improvement in joint strength, with a 10% increase for Al2O3 coated samples and a 13% increase for TiC coated welds compared to the uncoated material. Notably, TiC outperformed Al2O3 at higher concentrations, exhibiting more uniform dispersion with reduced agglomeration and porosity. In contrast, Al2O3 showed a tendency toward particle clustering and pore formation at elevated concentrations, which limited its strengthening efficiency. This highlights the potential of nanoparticle reinforcement for enhancing the reliability and performance of laser welded 6xxx aluminium alloys.