半参数单指标变换模型的辨识与推理

IF 4 3区 经济学 Q1 ECONOMICS
Yingqian Lin , Yundong Tu
{"title":"半参数单指标变换模型的辨识与推理","authors":"Yingqian Lin ,&nbsp;Yundong Tu","doi":"10.1016/j.jeconom.2025.106084","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>e</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a random vector of regressors, <span><math><mi>Y</mi></math></span> is the dependent variable and <span><math><mi>e</mi></math></span> is the random noise, the monotonic function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the smooth function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the index vector <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of <span><math><mi>δ</mi></math></span> (proportional to <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) has a <span><math><mi>V</mi></math></span>-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a functional of the conditional distribution estimator of <span><math><mi>Y</mi></math></span> given <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and is shown to be <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent and asymptotically normal. The sieve estimator of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106084"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and inference for semiparametric single index transformation models\",\"authors\":\"Yingqian Lin ,&nbsp;Yundong Tu\",\"doi\":\"10.1016/j.jeconom.2025.106084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>e</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a random vector of regressors, <span><math><mi>Y</mi></math></span> is the dependent variable and <span><math><mi>e</mi></math></span> is the random noise, the monotonic function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the smooth function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the index vector <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of <span><math><mi>δ</mi></math></span> (proportional to <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) has a <span><math><mi>V</mi></math></span>-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a functional of the conditional distribution estimator of <span><math><mi>Y</mi></math></span> given <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and is shown to be <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent and asymptotically normal. The sieve estimator of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"251 \",\"pages\":\"Article 106084\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625001381\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001381","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类因变量经过非参数变换的半参数单指标模型。模型的形式为G0(Y)= G0(X θ0)+e,其中X是回归量的随机向量,Y是因变量,e是随机噪声,单调函数G0、平滑函数G0和指标向量θ0都是未知的。这个模型是非常通用的,因为它嵌套了许多流行的回归模型作为特殊情况。我们首先提出了三个未知量的识别策略,然后在此基础上构造了估计量。δ(与θ0成比例)的核密度加权平均导数估计量具有v统计量表示,并在小带宽渐近条件下建立了其渐近正态性。变换函数G0的核估计量是给定X θ0的条件分布估计量Y的一个泛函,并且被证明是n一致的和渐近正态的。证明了g0的筛估计量具有标准的非参数渐近性质。还开发了单指标结构的规范测试和允许内禀回归量的扩展。此外,还讨论了数据驱动下平滑参数的选择。仿真结果表明所提出的估计器具有良好的有限样本性能和规格测试。通过对家庭收入对儿童学业成就影响的实证研究,证明了该模型的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and inference for semiparametric single index transformation models
This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form G0(Y)=g0(Xθ0)+e, where X is a random vector of regressors, Y is the dependent variable and e is the random noise, the monotonic function G0, the smooth function g0 and the index vector θ0 are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of δ (proportional to θ0) has a V-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function G0 is a functional of the conditional distribution estimator of Y given Xθ0 and is shown to be n-consistent and asymptotically normal. The sieve estimator of g0 is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信