{"title":"半参数单指标变换模型的辨识与推理","authors":"Yingqian Lin , Yundong Tu","doi":"10.1016/j.jeconom.2025.106084","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>e</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a random vector of regressors, <span><math><mi>Y</mi></math></span> is the dependent variable and <span><math><mi>e</mi></math></span> is the random noise, the monotonic function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the smooth function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the index vector <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of <span><math><mi>δ</mi></math></span> (proportional to <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) has a <span><math><mi>V</mi></math></span>-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a functional of the conditional distribution estimator of <span><math><mi>Y</mi></math></span> given <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and is shown to be <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent and asymptotically normal. The sieve estimator of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"251 ","pages":"Article 106084"},"PeriodicalIF":4.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and inference for semiparametric single index transformation models\",\"authors\":\"Yingqian Lin , Yundong Tu\",\"doi\":\"10.1016/j.jeconom.2025.106084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>Y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>+</mo><mi>e</mi></mrow></math></span>, where <span><math><mi>X</mi></math></span> is a random vector of regressors, <span><math><mi>Y</mi></math></span> is the dependent variable and <span><math><mi>e</mi></math></span> is the random noise, the monotonic function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, the smooth function <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the index vector <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of <span><math><mi>δ</mi></math></span> (proportional to <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) has a <span><math><mi>V</mi></math></span>-statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is a functional of the conditional distribution estimator of <span><math><mi>Y</mi></math></span> given <span><math><mrow><msup><mrow><mi>X</mi></mrow><mrow><mo>⊤</mo></mrow></msup><msub><mrow><mi>θ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and is shown to be <span><math><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>-consistent and asymptotically normal. The sieve estimator of <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"251 \",\"pages\":\"Article 106084\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625001381\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625001381","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Identification and inference for semiparametric single index transformation models
This paper considers a semiparametric single index model in which the dependent variable is subject to a nonparametric transformation. The model has the form , where is a random vector of regressors, is the dependent variable and is the random noise, the monotonic function , the smooth function and the index vector are all unknown. This model is quite general in the sense that it nests many popular regression models as special cases. We first propose identification strategies for the three unknown quantities, based on which estimators are then constructed. The kernel density weighted average derivative estimator of (proportional to ) has a -statistic representation and its asymptotical normality is established under the small bandwidth asymptotics. The kernel estimator of the transformation function is a functional of the conditional distribution estimator of given and is shown to be -consistent and asymptotically normal. The sieve estimator of is shown to enjoy the standard nonparametric asymptotic properties. A specification test for the single index structure and extension to allow for endogeneous regressors are also developed. In addition, data-driven choices of the smoothing parameters are discussed. Simulation results illustrate the nice finite sample performance of the proposed estimators and specification test. An empirical application to studying the impact of family income on child achievement demonstrates the practical merits of the proposed model.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.