Tanja Pavleska , Massimiliano Masi , Giovanni Paolo Sellitto , Helder Aranha
{"title":"基于架构的设计安全协同智能交通系统治理","authors":"Tanja Pavleska , Massimiliano Masi , Giovanni Paolo Sellitto , Helder Aranha","doi":"10.1016/j.vehcom.2025.100967","DOIUrl":null,"url":null,"abstract":"<div><div>Cooperative Intelligent Transport Systems (C-ITS) involve a complex network of diverse components that communicate with each other and with their environment. These systems are essential for improving transport efficiency, enabling smoother movement of people and goods, and supporting economic growth. However, due to their highly connected nature, C-ITS face major challenges related to cybersecurity and interoperability—both of which are directly linked to safety. Managing evolving software and standards while ensuring security places a heavy burden on architects, security experts, and organizational stakeholders.</div><div>In this work, we propose a methodology to support the secure design and deployment of C-ITS systems. The approach is based on established standards and adaptable to other critical sectors, such as healthcare, energy and smart cities, but is here tailored to the specific context of the transport domain. Our main contribution is a governance-based framework for secure deployment of standards, aimed at addressing the problem of standards maintenance, interoperability, and architectural sustainability. We demonstrate its application through a real-world use case involving secure vehicle-to-infrastructure (V2I) communication.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"55 ","pages":"Article 100967"},"PeriodicalIF":6.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Architecture-based governance for secure-by-design Cooperative Intelligent Transport Systems\",\"authors\":\"Tanja Pavleska , Massimiliano Masi , Giovanni Paolo Sellitto , Helder Aranha\",\"doi\":\"10.1016/j.vehcom.2025.100967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cooperative Intelligent Transport Systems (C-ITS) involve a complex network of diverse components that communicate with each other and with their environment. These systems are essential for improving transport efficiency, enabling smoother movement of people and goods, and supporting economic growth. However, due to their highly connected nature, C-ITS face major challenges related to cybersecurity and interoperability—both of which are directly linked to safety. Managing evolving software and standards while ensuring security places a heavy burden on architects, security experts, and organizational stakeholders.</div><div>In this work, we propose a methodology to support the secure design and deployment of C-ITS systems. The approach is based on established standards and adaptable to other critical sectors, such as healthcare, energy and smart cities, but is here tailored to the specific context of the transport domain. Our main contribution is a governance-based framework for secure deployment of standards, aimed at addressing the problem of standards maintenance, interoperability, and architectural sustainability. We demonstrate its application through a real-world use case involving secure vehicle-to-infrastructure (V2I) communication.</div></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"55 \",\"pages\":\"Article 100967\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209625000944\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000944","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Architecture-based governance for secure-by-design Cooperative Intelligent Transport Systems
Cooperative Intelligent Transport Systems (C-ITS) involve a complex network of diverse components that communicate with each other and with their environment. These systems are essential for improving transport efficiency, enabling smoother movement of people and goods, and supporting economic growth. However, due to their highly connected nature, C-ITS face major challenges related to cybersecurity and interoperability—both of which are directly linked to safety. Managing evolving software and standards while ensuring security places a heavy burden on architects, security experts, and organizational stakeholders.
In this work, we propose a methodology to support the secure design and deployment of C-ITS systems. The approach is based on established standards and adaptable to other critical sectors, such as healthcare, energy and smart cities, but is here tailored to the specific context of the transport domain. Our main contribution is a governance-based framework for secure deployment of standards, aimed at addressing the problem of standards maintenance, interoperability, and architectural sustainability. We demonstrate its application through a real-world use case involving secure vehicle-to-infrastructure (V2I) communication.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.