从螺旋湍流到时空混沌:一种新型CFGL系统的数值与分析研究

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kolade M. Owolabi , Sonal Jain
{"title":"从螺旋湍流到时空混沌:一种新型CFGL系统的数值与分析研究","authors":"Kolade M. Owolabi ,&nbsp;Sonal Jain","doi":"10.1016/j.chaos.2025.117073","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a novel Complex Fisher–Ginzburg–Landau (CFGL) equation that unifies logistic growth dynamics with complex amplitude evolution, creating a versatile framework for modeling spatiotemporal behaviors in excitable and oscillatory media. This hybrid formulation incorporates nonlinear phase-conjugate feedback and higher-order real-valued saturation, allowing it to capture a wider spectrum of instabilities and patterns than classical Fisher or Ginzburg–Landau models individually. We conduct a thorough linear stability analysis and derive a dispersion relation that delineates the regimes of Turing, Hopf, and mixed-mode instabilities. Through multiple-scale perturbation theory, we construct amplitude equations that govern slow modulations near critical bifurcation thresholds. We also propose an energy-like Lyapunov functional to investigate dissipation mechanisms and boundedness of solutions, establishing conditions for pattern onset and transition to chaos. Numerical simulations based on both exponential time-differencing Runge–Kutta (ETDRK4) and split-step Fourier (SSFM) schemes reveal a wealth of emergent structures, including traveling fronts, defect turbulence, multi-core spirals, and asymmetric pattern drift. Remarkably, ETDRK4 schemes tend to generate spot-like Turing patterns, while SSFM captures robust spiral waves, underscoring the sensitivity of the system to numerical treatment. Our findings provide new insights into real–imaginary coupling effects in pattern formation and demonstrate the CFGL model’s applicability across diverse domains such as nonlinear optics, chemical reactions, and biological signal propagation. This work establishes a foundational platform for future studies on symmetry breaking, geometric extensions, and complex bifurcation phenomena in reaction–diffusion systems.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"200 ","pages":"Article 117073"},"PeriodicalIF":5.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From spiral turbulence to spatiotemporal chaos: Numerical and analytical study of a novel CFGL system\",\"authors\":\"Kolade M. Owolabi ,&nbsp;Sonal Jain\",\"doi\":\"10.1016/j.chaos.2025.117073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a novel Complex Fisher–Ginzburg–Landau (CFGL) equation that unifies logistic growth dynamics with complex amplitude evolution, creating a versatile framework for modeling spatiotemporal behaviors in excitable and oscillatory media. This hybrid formulation incorporates nonlinear phase-conjugate feedback and higher-order real-valued saturation, allowing it to capture a wider spectrum of instabilities and patterns than classical Fisher or Ginzburg–Landau models individually. We conduct a thorough linear stability analysis and derive a dispersion relation that delineates the regimes of Turing, Hopf, and mixed-mode instabilities. Through multiple-scale perturbation theory, we construct amplitude equations that govern slow modulations near critical bifurcation thresholds. We also propose an energy-like Lyapunov functional to investigate dissipation mechanisms and boundedness of solutions, establishing conditions for pattern onset and transition to chaos. Numerical simulations based on both exponential time-differencing Runge–Kutta (ETDRK4) and split-step Fourier (SSFM) schemes reveal a wealth of emergent structures, including traveling fronts, defect turbulence, multi-core spirals, and asymmetric pattern drift. Remarkably, ETDRK4 schemes tend to generate spot-like Turing patterns, while SSFM captures robust spiral waves, underscoring the sensitivity of the system to numerical treatment. Our findings provide new insights into real–imaginary coupling effects in pattern formation and demonstrate the CFGL model’s applicability across diverse domains such as nonlinear optics, chemical reactions, and biological signal propagation. This work establishes a foundational platform for future studies on symmetry breaking, geometric extensions, and complex bifurcation phenomena in reaction–diffusion systems.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"200 \",\"pages\":\"Article 117073\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925010860\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925010860","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个新的复杂费雪-金兹堡-朗道(CFGL)方程,该方程将逻辑增长动力学与复杂振幅演化结合起来,为可激发和振荡介质中的时空行为建模创建了一个通用框架。这种混合配方结合了非线性相位共轭反馈和高阶实值饱和,使其能够捕获比经典费雪或金兹堡-朗道模型更广泛的不稳定性和模式。我们进行了彻底的线性稳定性分析,并推导了色散关系,描述了图灵,Hopf和混合模式不稳定性的制度。通过多尺度摄动理论,我们构造了控制临界分岔阈值附近慢调制的振幅方程。我们还提出了一个类能Lyapunov泛函来研究解的耗散机制和有界性,建立了模式开始和向混沌过渡的条件。基于指数时差龙格-库塔(ETDRK4)和分步傅立叶(SSFM)格式的数值模拟揭示了大量的紧急结构,包括行进锋、缺陷湍流、多核螺旋和不对称模式漂移。值得注意的是,ETDRK4方案倾向于生成点状图灵模式,而SSFM捕获稳健的螺旋波,强调了系统对数值处理的敏感性。我们的发现为模式形成中的实-幻耦合效应提供了新的见解,并证明了CFGL模型在非线性光学、化学反应和生物信号传播等不同领域的适用性。这项工作为今后研究反应扩散系统中的对称破缺、几何扩展和复杂分岔现象奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From spiral turbulence to spatiotemporal chaos: Numerical and analytical study of a novel CFGL system
We introduce a novel Complex Fisher–Ginzburg–Landau (CFGL) equation that unifies logistic growth dynamics with complex amplitude evolution, creating a versatile framework for modeling spatiotemporal behaviors in excitable and oscillatory media. This hybrid formulation incorporates nonlinear phase-conjugate feedback and higher-order real-valued saturation, allowing it to capture a wider spectrum of instabilities and patterns than classical Fisher or Ginzburg–Landau models individually. We conduct a thorough linear stability analysis and derive a dispersion relation that delineates the regimes of Turing, Hopf, and mixed-mode instabilities. Through multiple-scale perturbation theory, we construct amplitude equations that govern slow modulations near critical bifurcation thresholds. We also propose an energy-like Lyapunov functional to investigate dissipation mechanisms and boundedness of solutions, establishing conditions for pattern onset and transition to chaos. Numerical simulations based on both exponential time-differencing Runge–Kutta (ETDRK4) and split-step Fourier (SSFM) schemes reveal a wealth of emergent structures, including traveling fronts, defect turbulence, multi-core spirals, and asymmetric pattern drift. Remarkably, ETDRK4 schemes tend to generate spot-like Turing patterns, while SSFM captures robust spiral waves, underscoring the sensitivity of the system to numerical treatment. Our findings provide new insights into real–imaginary coupling effects in pattern formation and demonstrate the CFGL model’s applicability across diverse domains such as nonlinear optics, chemical reactions, and biological signal propagation. This work establishes a foundational platform for future studies on symmetry breaking, geometric extensions, and complex bifurcation phenomena in reaction–diffusion systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信