{"title":"LGFFM:一种局部和全球化的超声图像分割频率融合模型。","authors":"Xiling Luo, Yi Wang, Le Ou-Yang","doi":"10.1109/TMI.2025.3600327","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGFFM: A Localized and Globalized Frequency Fusion Model for Ultrasound Image Segmentation.\",\"authors\":\"Xiling Luo, Yi Wang, Le Ou-Yang\",\"doi\":\"10.1109/TMI.2025.3600327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2025.3600327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3600327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LGFFM: A Localized and Globalized Frequency Fusion Model for Ultrasound Image Segmentation.
Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.