{"title":"基于对抗性一致性约束学习和交叉指征网络的半监督医学高光谱图像分割。","authors":"Geng Qin;Huan Liu;Xueyu Zhang;Wei Li;Yuxing Guo;Chuanbin Guo","doi":"10.1109/TIP.2025.3598499","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging technology is considered a new paradigm for high-precision pathological image segmentation due to its ability to obtain spatial and spectral information of the detected object simultaneously. However, due to the time-consuming and laborious manual annotation, precise annotation of medical hyperspectral images is difficult to obtain. Therefore, there is an urgent need for a semi-supervised learning framework that can fully utilize unlabeled data for medical hyperspectral image segmentation. In this work, we propose an adversarial consistency constraint learning cross indication network (ACCL-CINet), which achieves accurate pathological image segmentation through adversarial consistency constraint learning training strategies. The ACCL-CINet comprises a contextual and structural encoder to form the spatial-spectral feature encoding part. The contextual and structural indications are aggregated into features through a cross indication attention module and finally decoded by a pixel decoder to generate prediction results. For the semi-supervised training strategy, a pixel perceptual consistency module encourages the two models to generate consistent and low-entropy predictions. Secondly, a pixel maximum neighborhood probability adversarial constraint strategy is designed, which produces high-quality pseudo labels for cross supervision training. The proposed ACCL-CINet has been rigorously evaluated on both public and private datasets, with experimental results demonstrating that it outperforms state-of-the-art semi-supervised methods. The code is available at: <uri>https://github.com/Qugeryolo/ACCL-CINet</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"5414-5428"},"PeriodicalIF":13.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Supervised Medical Hyperspectral Image Segmentation Using Adversarial Consistency Constraint Learning and Cross Indication Network\",\"authors\":\"Geng Qin;Huan Liu;Xueyu Zhang;Wei Li;Yuxing Guo;Chuanbin Guo\",\"doi\":\"10.1109/TIP.2025.3598499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral imaging technology is considered a new paradigm for high-precision pathological image segmentation due to its ability to obtain spatial and spectral information of the detected object simultaneously. However, due to the time-consuming and laborious manual annotation, precise annotation of medical hyperspectral images is difficult to obtain. Therefore, there is an urgent need for a semi-supervised learning framework that can fully utilize unlabeled data for medical hyperspectral image segmentation. In this work, we propose an adversarial consistency constraint learning cross indication network (ACCL-CINet), which achieves accurate pathological image segmentation through adversarial consistency constraint learning training strategies. The ACCL-CINet comprises a contextual and structural encoder to form the spatial-spectral feature encoding part. The contextual and structural indications are aggregated into features through a cross indication attention module and finally decoded by a pixel decoder to generate prediction results. For the semi-supervised training strategy, a pixel perceptual consistency module encourages the two models to generate consistent and low-entropy predictions. Secondly, a pixel maximum neighborhood probability adversarial constraint strategy is designed, which produces high-quality pseudo labels for cross supervision training. The proposed ACCL-CINet has been rigorously evaluated on both public and private datasets, with experimental results demonstrating that it outperforms state-of-the-art semi-supervised methods. The code is available at: <uri>https://github.com/Qugeryolo/ACCL-CINet</uri>\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"34 \",\"pages\":\"5414-5428\"},\"PeriodicalIF\":13.7000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11130636/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11130636/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-Supervised Medical Hyperspectral Image Segmentation Using Adversarial Consistency Constraint Learning and Cross Indication Network
Hyperspectral imaging technology is considered a new paradigm for high-precision pathological image segmentation due to its ability to obtain spatial and spectral information of the detected object simultaneously. However, due to the time-consuming and laborious manual annotation, precise annotation of medical hyperspectral images is difficult to obtain. Therefore, there is an urgent need for a semi-supervised learning framework that can fully utilize unlabeled data for medical hyperspectral image segmentation. In this work, we propose an adversarial consistency constraint learning cross indication network (ACCL-CINet), which achieves accurate pathological image segmentation through adversarial consistency constraint learning training strategies. The ACCL-CINet comprises a contextual and structural encoder to form the spatial-spectral feature encoding part. The contextual and structural indications are aggregated into features through a cross indication attention module and finally decoded by a pixel decoder to generate prediction results. For the semi-supervised training strategy, a pixel perceptual consistency module encourages the two models to generate consistent and low-entropy predictions. Secondly, a pixel maximum neighborhood probability adversarial constraint strategy is designed, which produces high-quality pseudo labels for cross supervision training. The proposed ACCL-CINet has been rigorously evaluated on both public and private datasets, with experimental results demonstrating that it outperforms state-of-the-art semi-supervised methods. The code is available at: https://github.com/Qugeryolo/ACCL-CINet