GraphCheck:通过提取知识图驱动的事实检查打破长期文本障碍。

Yingjian Chen, Haoran Liu, Yinhong Liu, Jinxiang Xie, Rui Yang, Han Yuan, Yanran Fu, Peng Yuan Zhou, Qingyu Chen, James Caverlee, Irene Li
{"title":"GraphCheck:通过提取知识图驱动的事实检查打破长期文本障碍。","authors":"Yingjian Chen, Haoran Liu, Yinhong Liu, Jinxiang Xie, Rui Yang, Han Yuan, Yanran Fu, Peng Yuan Zhou, Qingyu Chen, James Caverlee, Irene Li","doi":"10.18653/v1/2025.acl-long.729","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose <b><i>GraphCheck</i></b> , a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.</p>","PeriodicalId":74541,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. Meeting","volume":"2025 ","pages":"14976-14995"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360635/pdf/","citationCount":"0","resultStr":"{\"title\":\"GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking.\",\"authors\":\"Yingjian Chen, Haoran Liu, Yinhong Liu, Jinxiang Xie, Rui Yang, Han Yuan, Yanran Fu, Peng Yuan Zhou, Qingyu Chen, James Caverlee, Irene Li\",\"doi\":\"10.18653/v1/2025.acl-long.729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose <b><i>GraphCheck</i></b> , a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.</p>\",\"PeriodicalId\":74541,\"journal\":{\"name\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"volume\":\"2025 \",\"pages\":\"14976-14995\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the conference. Association for Computational Linguistics. Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2025.acl-long.729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2025.acl-long.729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)被广泛使用,但是它们经常产生微妙的事实错误,特别是在长格式文本中。这些错误在某些专业领域(如医学)是致命的。现有的基于基础文档的事实核查方法面临两个主要挑战:(1)它们难以理解长文档中复杂的多跳关系,往往忽略了微妙的事实错误;(2)大多数专业方法依赖于两两比较,需要多次模型调用,导致资源和计算成本高。为了解决这些挑战,我们提出了GraphCheck,这是一个事实检查框架,它使用提取的知识图来增强文本表示。图神经网络进一步处理这些图作为软提示,使法学硕士能够更有效地整合结构化知识。GraphCheck通过基于图的推理进行了增强,可以捕获现有方法经常忽略的多跳推理链,从而在单个推理调用中实现精确和高效的事实检查。跨越一般和医学领域的七个基准的实验结果表明,与基线模型相比,该模型的总体改进高达7.1%。值得注意的是,GraphCheck优于现有的专业事实检查器,并与最先进的llm(如DeepSeek-V3和openai - 01)实现了相当的性能,参数明显减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GraphCheck: Breaking Long-Term Text Barriers with Extracted Knowledge Graph-Powered Fact-Checking.

Large language models (LLMs) are widely used, but they often generate subtle factual errors, especially in long-form text. These errors are fatal in some specialized domains such as medicine. Existing fact-checking with grounding documents methods face two main challenges: (1) they struggle to understand complex multihop relations in long documents, often overlooking subtle factual errors; (2) most specialized methods rely on pairwise comparisons, requiring multiple model calls, leading to high resource and computational costs. To address these challenges, we propose GraphCheck , a fact-checking framework that uses extracted knowledge graphs to enhance text representation. Graph Neural Networks further process these graphs as a soft prompt, enabling LLMs to incorporate structured knowledge more effectively. Enhanced with graph-based reasoning, GraphCheck captures multihop reasoning chains that are often overlooked by existing methods, enabling precise and efficient fact-checking in a single inference call. Experimental results on seven benchmarks spanning both general and medical domains demonstrate up to a 7.1% overall improvement over baseline models. Notably, GraphCheck outperforms existing specialized fact-checkers and achieves comparable performance with state-of-the-art LLMs, such as DeepSeek-V3 and OpenAI-o1, with significantly fewer parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信