树突交叉注意UNet的高剂量率近距离治疗计划。

Sourav Saini, Yawen Wei, Jingzhao Rong, Xiaofeng Liu
{"title":"树突交叉注意UNet的高剂量率近距离治疗计划。","authors":"Sourav Saini, Yawen Wei, Jingzhao Rong, Xiaofeng Liu","doi":"10.1117/12.3046746","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment of cervical cancer commonly involves high-dose-rate brachytherapy (HDR-BT), a procedure that requires precise and efficient planning to achieve the best patient outcomes. Historically, the HDR-BT planning process has been labor-intensive and largely dependent on the expertise of the clinician, resulting in potential inconsistencies in the quality of treatment. To overcome this issue, we propose an innovative method that employs advanced deep-learning models to improve HDR-BT planning. This paper presents the <b>Dendrite Cross-Attention UNet (DCA-UNet)</b>, which features a sophisticated dendritic structure comprising a primary branch for stacked inputs and three auxiliary branches dedicated to the segmentation of the clinical target volume (CTV), bladder, and rectum. This architecture enhances the model's understanding of organ-at-risk (OAR) areas, thereby improving dose prediction accuracy. Extensive evaluations reveal that DCA-UNet significantly enhances the precision of HDR-BT dose predictions across different applicator types. Our findings indicate that DCA-UNet consistently outperforms both traditional UNet and the more recent SwimUNetr models. By advancing the use of cross-attention mechanisms in deep learning frameworks, this research aids in the standardization of HDR-BT planning and opens up promising possibilities for future advancements in cervical cancer care.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13408 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360165/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-dose-rate Brachytherapy Planning with Dendrite Cross-Attention UNet.\",\"authors\":\"Sourav Saini, Yawen Wei, Jingzhao Rong, Xiaofeng Liu\",\"doi\":\"10.1117/12.3046746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment of cervical cancer commonly involves high-dose-rate brachytherapy (HDR-BT), a procedure that requires precise and efficient planning to achieve the best patient outcomes. Historically, the HDR-BT planning process has been labor-intensive and largely dependent on the expertise of the clinician, resulting in potential inconsistencies in the quality of treatment. To overcome this issue, we propose an innovative method that employs advanced deep-learning models to improve HDR-BT planning. This paper presents the <b>Dendrite Cross-Attention UNet (DCA-UNet)</b>, which features a sophisticated dendritic structure comprising a primary branch for stacked inputs and three auxiliary branches dedicated to the segmentation of the clinical target volume (CTV), bladder, and rectum. This architecture enhances the model's understanding of organ-at-risk (OAR) areas, thereby improving dose prediction accuracy. Extensive evaluations reveal that DCA-UNet significantly enhances the precision of HDR-BT dose predictions across different applicator types. Our findings indicate that DCA-UNet consistently outperforms both traditional UNet and the more recent SwimUNetr models. By advancing the use of cross-attention mechanisms in deep learning frameworks, this research aids in the standardization of HDR-BT planning and opens up promising possibilities for future advancements in cervical cancer care.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"13408 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3046746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3046746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

宫颈癌的治疗通常包括高剂量近距离放射治疗(HDR-BT),这一过程需要精确和有效的计划,以达到最佳的患者结果。从历史上看,HDR-BT规划过程是劳动密集型的,很大程度上依赖于临床医生的专业知识,导致治疗质量可能不一致。为了克服这一问题,我们提出了一种创新的方法,采用先进的深度学习模型来改进HDR-BT规划。本文介绍了树突交叉注意UNet (DCA-UNet),它具有复杂的树突结构,包括用于堆叠输入的主要分支和用于临床靶体积(CTV)、膀胱和直肠分割的三个辅助分支。这种结构增强了模型对器官危险(OAR)区域的理解,从而提高了剂量预测的准确性。广泛的评估表明,DCA-UNet显着提高了不同涂抹器类型的HDR-BT剂量预测的精度。我们的研究结果表明,DCA-UNet始终优于传统的UNet和最近的swimunet模型。通过在深度学习框架中推进交叉关注机制的使用,本研究有助于HDR-BT计划的标准化,并为宫颈癌护理的未来发展开辟了有希望的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-dose-rate Brachytherapy Planning with Dendrite Cross-Attention UNet.

Treatment of cervical cancer commonly involves high-dose-rate brachytherapy (HDR-BT), a procedure that requires precise and efficient planning to achieve the best patient outcomes. Historically, the HDR-BT planning process has been labor-intensive and largely dependent on the expertise of the clinician, resulting in potential inconsistencies in the quality of treatment. To overcome this issue, we propose an innovative method that employs advanced deep-learning models to improve HDR-BT planning. This paper presents the Dendrite Cross-Attention UNet (DCA-UNet), which features a sophisticated dendritic structure comprising a primary branch for stacked inputs and three auxiliary branches dedicated to the segmentation of the clinical target volume (CTV), bladder, and rectum. This architecture enhances the model's understanding of organ-at-risk (OAR) areas, thereby improving dose prediction accuracy. Extensive evaluations reveal that DCA-UNet significantly enhances the precision of HDR-BT dose predictions across different applicator types. Our findings indicate that DCA-UNet consistently outperforms both traditional UNet and the more recent SwimUNetr models. By advancing the use of cross-attention mechanisms in deep learning frameworks, this research aids in the standardization of HDR-BT planning and opens up promising possibilities for future advancements in cervical cancer care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信