{"title":"反式组学分析确定了与冠状动脉疾病相关的LPCAT1的生化网络。","authors":"Paul Wei-Che Hsu, Chi-Hsiao Yeh, Chi-Jen Lo, Tsung-Hsien Tsai, Yun-Hsuan Chan, Yi-Ju Chou, Ning-I Yang, Mei-Ling Cheng, Wayne Huey-Herng Sheu, Chi-Chun Lai, Huey-Kang Sytwu, Ting-Fen Tsai","doi":"10.1186/s40364-025-00821-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coronary artery disease (CAD) remains a leading cause of mortality in developed nations. While previous genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) linked to CAD, their impact on disease progression requires trans-omics validation.</p><p><strong>Methods: </strong>This study merges whole genome SNP analysis and metabolomic profiling to distinguish CAD patients from high-risk and healthy individuals. A cross-sectional study was conducted, enrolling participants from the Northeastern Taiwan Community Medicine Research Cohort, which spans the period between August 2013 and November 2020. A total of 781 participants were included in the study and categorized into three groups: control (n = 271), high-risk (n = 363), and CAD (n = 147) groups, following a stratification protocol. The study integrated K-clustering of metabolomics and SNP datasets. Subsequently, a machine-learning (ML)-assisted prediction model was developed specifically for CAD identification.</p><p><strong>Results: </strong>Four significant findings emerged. Firstly, plasma levels of phospholipids decline from healthy controls to high-risk individuals and then decline further among CAD patients. This indicates that plasma phospholipids have potential as biomarkers and implies that they have a role in CAD progression. Secondly, five genes are linked to lipidomic alterations via their top-ranking among CAD-associated SNPs. Thirdly, a specific LPCAT1 haplotype is associated with CAD using a trans-omics approach. Lastly, an ML-assisted trans-omics prediction model for CAD was developed, which achieves an area under the curve of 0.917, with LPCAT1 among the 16 top-ranked predictive features.</p><p><strong>Conclusion: </strong>This study highlights the usefulness of a multi-omics signature when discriminating CAD patients and suggests that abnormalities in phospholipid metabolism are influenced by LPCAT1 genetic variants. Our findings underscore the potential of multi-omics approaches to our understanding and identification of critical factors in CAD development.</p><p><strong>Trial registration number and date of registration: </strong>ClinicalTrials.gov Identifier: NCT04839796; Aug 2013.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"107"},"PeriodicalIF":11.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366056/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trans-omics analyses identify the biochemical network of LPCAT1 associated with coronary artery disease.\",\"authors\":\"Paul Wei-Che Hsu, Chi-Hsiao Yeh, Chi-Jen Lo, Tsung-Hsien Tsai, Yun-Hsuan Chan, Yi-Ju Chou, Ning-I Yang, Mei-Ling Cheng, Wayne Huey-Herng Sheu, Chi-Chun Lai, Huey-Kang Sytwu, Ting-Fen Tsai\",\"doi\":\"10.1186/s40364-025-00821-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Coronary artery disease (CAD) remains a leading cause of mortality in developed nations. While previous genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) linked to CAD, their impact on disease progression requires trans-omics validation.</p><p><strong>Methods: </strong>This study merges whole genome SNP analysis and metabolomic profiling to distinguish CAD patients from high-risk and healthy individuals. A cross-sectional study was conducted, enrolling participants from the Northeastern Taiwan Community Medicine Research Cohort, which spans the period between August 2013 and November 2020. A total of 781 participants were included in the study and categorized into three groups: control (n = 271), high-risk (n = 363), and CAD (n = 147) groups, following a stratification protocol. The study integrated K-clustering of metabolomics and SNP datasets. Subsequently, a machine-learning (ML)-assisted prediction model was developed specifically for CAD identification.</p><p><strong>Results: </strong>Four significant findings emerged. Firstly, plasma levels of phospholipids decline from healthy controls to high-risk individuals and then decline further among CAD patients. This indicates that plasma phospholipids have potential as biomarkers and implies that they have a role in CAD progression. Secondly, five genes are linked to lipidomic alterations via their top-ranking among CAD-associated SNPs. Thirdly, a specific LPCAT1 haplotype is associated with CAD using a trans-omics approach. Lastly, an ML-assisted trans-omics prediction model for CAD was developed, which achieves an area under the curve of 0.917, with LPCAT1 among the 16 top-ranked predictive features.</p><p><strong>Conclusion: </strong>This study highlights the usefulness of a multi-omics signature when discriminating CAD patients and suggests that abnormalities in phospholipid metabolism are influenced by LPCAT1 genetic variants. Our findings underscore the potential of multi-omics approaches to our understanding and identification of critical factors in CAD development.</p><p><strong>Trial registration number and date of registration: </strong>ClinicalTrials.gov Identifier: NCT04839796; Aug 2013.</p>\",\"PeriodicalId\":54225,\"journal\":{\"name\":\"Biomarker Research\",\"volume\":\"13 1\",\"pages\":\"107\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366056/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomarker Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40364-025-00821-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00821-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Trans-omics analyses identify the biochemical network of LPCAT1 associated with coronary artery disease.
Background: Coronary artery disease (CAD) remains a leading cause of mortality in developed nations. While previous genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) linked to CAD, their impact on disease progression requires trans-omics validation.
Methods: This study merges whole genome SNP analysis and metabolomic profiling to distinguish CAD patients from high-risk and healthy individuals. A cross-sectional study was conducted, enrolling participants from the Northeastern Taiwan Community Medicine Research Cohort, which spans the period between August 2013 and November 2020. A total of 781 participants were included in the study and categorized into three groups: control (n = 271), high-risk (n = 363), and CAD (n = 147) groups, following a stratification protocol. The study integrated K-clustering of metabolomics and SNP datasets. Subsequently, a machine-learning (ML)-assisted prediction model was developed specifically for CAD identification.
Results: Four significant findings emerged. Firstly, plasma levels of phospholipids decline from healthy controls to high-risk individuals and then decline further among CAD patients. This indicates that plasma phospholipids have potential as biomarkers and implies that they have a role in CAD progression. Secondly, five genes are linked to lipidomic alterations via their top-ranking among CAD-associated SNPs. Thirdly, a specific LPCAT1 haplotype is associated with CAD using a trans-omics approach. Lastly, an ML-assisted trans-omics prediction model for CAD was developed, which achieves an area under the curve of 0.917, with LPCAT1 among the 16 top-ranked predictive features.
Conclusion: This study highlights the usefulness of a multi-omics signature when discriminating CAD patients and suggests that abnormalities in phospholipid metabolism are influenced by LPCAT1 genetic variants. Our findings underscore the potential of multi-omics approaches to our understanding and identification of critical factors in CAD development.
Trial registration number and date of registration: ClinicalTrials.gov Identifier: NCT04839796; Aug 2013.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.