利用细胞核多亲本群体利用细胞核多样性绘制大麦穗性状。

IF 5.1 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-10-08 DOI:10.1093/genetics/iyaf167
Schewach Bodenheimer, Eyal Bdolach, Avital Be'ery, Lalit Dev Tiwari, Ruth Sarahi Perez-Alfaro, Shengming Yang, Daniel Koenig, Eyal Fridman
{"title":"利用细胞核多亲本群体利用细胞核多样性绘制大麦穗性状。","authors":"Schewach Bodenheimer, Eyal Bdolach, Avital Be'ery, Lalit Dev Tiwari, Ruth Sarahi Perez-Alfaro, Shengming Yang, Daniel Koenig, Eyal Fridman","doi":"10.1093/genetics/iyaf167","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between nuclear and cytoplasmic genomes, collectively known as cytonuclear interactions (CNIs), is increasingly recognized as a key driver of phenotypic variation and adaptive potential across diverse organisms. Yet, leveraging cytoplasmic diversity and fully understanding the role of CNIs in agriculturally important traits remain major challenges in crop improvement. Here, we present the Cytonuclear Multi-Parent Population (CMPP), a novel interspecific resource comprising 951 doubled haploid lines, generated from 2 backcrosses between ten genetically diverse wild barley accessions (Hordeum vulgare ssp. spontaneum) used as female founders and the elite cultivar Noga (H. vulgare). Phenotyping across multiple environments revealed that up to 5% of variation in key spike and grain trait values are explained by cytoplasm (η2 = 0.05). Notably, wild cytoplasms influenced trait stability, with the B1K-50-04 cytoplasm increasing grain weight stability based on Shukla's measure. Genome-wide association studies employing Nested Association Mapping (NAM), FASTmrMLM, and MatrixEpistasis (ME) identified 76 marker-trait associations (MTAs). The ME approach specifically uncovered 16 cytonuclear QTL (cnQTL) exhibiting cytoplasm-dependent effects. Furthermore, we developed a genomic prediction strategy incorporating interactions between significant MTAs and population structure variables (subfamily and cytoplasm), which achieved cross-validation accuracies comparable to, or even exceeding, models using the full set of 6,679 SNPs, despite utilizing substantially fewer predictors, enabling quicker and more efficient validation runs. The CMPP provides a unique platform for dissecting cytoplasmic effects and CNIs, highlighting the importance of incorporating cytonuclear context in genetic mapping and prediction to effectively harness both nuclear and cytoplasmic diversity for crop improvement.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing cytonuclear diversity to map barley spike traits using the cytonuclear multi-parent population.\",\"authors\":\"Schewach Bodenheimer, Eyal Bdolach, Avital Be'ery, Lalit Dev Tiwari, Ruth Sarahi Perez-Alfaro, Shengming Yang, Daniel Koenig, Eyal Fridman\",\"doi\":\"10.1093/genetics/iyaf167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interplay between nuclear and cytoplasmic genomes, collectively known as cytonuclear interactions (CNIs), is increasingly recognized as a key driver of phenotypic variation and adaptive potential across diverse organisms. Yet, leveraging cytoplasmic diversity and fully understanding the role of CNIs in agriculturally important traits remain major challenges in crop improvement. Here, we present the Cytonuclear Multi-Parent Population (CMPP), a novel interspecific resource comprising 951 doubled haploid lines, generated from 2 backcrosses between ten genetically diverse wild barley accessions (Hordeum vulgare ssp. spontaneum) used as female founders and the elite cultivar Noga (H. vulgare). Phenotyping across multiple environments revealed that up to 5% of variation in key spike and grain trait values are explained by cytoplasm (η2 = 0.05). Notably, wild cytoplasms influenced trait stability, with the B1K-50-04 cytoplasm increasing grain weight stability based on Shukla's measure. Genome-wide association studies employing Nested Association Mapping (NAM), FASTmrMLM, and MatrixEpistasis (ME) identified 76 marker-trait associations (MTAs). The ME approach specifically uncovered 16 cytonuclear QTL (cnQTL) exhibiting cytoplasm-dependent effects. Furthermore, we developed a genomic prediction strategy incorporating interactions between significant MTAs and population structure variables (subfamily and cytoplasm), which achieved cross-validation accuracies comparable to, or even exceeding, models using the full set of 6,679 SNPs, despite utilizing substantially fewer predictors, enabling quicker and more efficient validation runs. The CMPP provides a unique platform for dissecting cytoplasmic effects and CNIs, highlighting the importance of incorporating cytonuclear context in genetic mapping and prediction to effectively harness both nuclear and cytoplasmic diversity for crop improvement.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf167\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

核基因组和细胞质基因组之间的相互作用,统称为细胞核相互作用(CNIs),越来越被认为是不同生物表型变异和适应潜力的关键驱动因素。然而,利用细胞质多样性和充分了解cni在农业重要性状中的作用仍然是作物改良的主要挑战。在此,我们提出了一种新的种间资源——细胞核多亲本群体(CMPP),它包括951个双倍体单倍体系,由十个遗传多样化的野生大麦(Hordeum vulgare ssp)的两个回交产生。作为女性创始人和精英栽培品种Noga (H. vulgare)。多环境表型分析表明,细胞质可以解释高达5%的关键穗和籽粒性状值变异(η²= 0.05)。值得注意的是,野生细胞质影响了性状的稳定性,根据Shukla的测量,bk1 -50-04细胞质增加了籽粒重的稳定性。利用嵌套关联图谱(Nested association Mapping, NAM)、FASTmrMLM和matrix上位(MatrixEpistasis, ME)进行的全基因组关联研究确定了76个标记-性状关联(marker-trait associations, mta)。ME方法特别发现了16个表现出细胞质依赖效应的细胞核QTL (cnQTL)。此外,我们开发了一种包含重要mta和群体结构变量(亚家族和细胞质)之间相互作用的基因组预测策略,该策略实现了与使用全部6,679个snp的模型相当甚至超过的交叉验证准确性,尽管使用的预测因子少得多,但能够实现更快、更有效的验证运行。CMPP为分析细胞质效应和cni提供了一个独特的平台,强调了在遗传定位和预测中结合细胞核背景的重要性,从而有效地利用核和细胞质多样性来进行作物改良。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing cytonuclear diversity to map barley spike traits using the cytonuclear multi-parent population.

The interplay between nuclear and cytoplasmic genomes, collectively known as cytonuclear interactions (CNIs), is increasingly recognized as a key driver of phenotypic variation and adaptive potential across diverse organisms. Yet, leveraging cytoplasmic diversity and fully understanding the role of CNIs in agriculturally important traits remain major challenges in crop improvement. Here, we present the Cytonuclear Multi-Parent Population (CMPP), a novel interspecific resource comprising 951 doubled haploid lines, generated from 2 backcrosses between ten genetically diverse wild barley accessions (Hordeum vulgare ssp. spontaneum) used as female founders and the elite cultivar Noga (H. vulgare). Phenotyping across multiple environments revealed that up to 5% of variation in key spike and grain trait values are explained by cytoplasm (η2 = 0.05). Notably, wild cytoplasms influenced trait stability, with the B1K-50-04 cytoplasm increasing grain weight stability based on Shukla's measure. Genome-wide association studies employing Nested Association Mapping (NAM), FASTmrMLM, and MatrixEpistasis (ME) identified 76 marker-trait associations (MTAs). The ME approach specifically uncovered 16 cytonuclear QTL (cnQTL) exhibiting cytoplasm-dependent effects. Furthermore, we developed a genomic prediction strategy incorporating interactions between significant MTAs and population structure variables (subfamily and cytoplasm), which achieved cross-validation accuracies comparable to, or even exceeding, models using the full set of 6,679 SNPs, despite utilizing substantially fewer predictors, enabling quicker and more efficient validation runs. The CMPP provides a unique platform for dissecting cytoplasmic effects and CNIs, highlighting the importance of incorporating cytonuclear context in genetic mapping and prediction to effectively harness both nuclear and cytoplasmic diversity for crop improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信