一个消息传递框架,用于使用scClassify2进行精确的单元状态识别。

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wenze Ding, Yue Cao, Xiaohang Fu, Marni Torkel, Jean Yee Hwa Yang
{"title":"一个消息传递框架,用于使用scClassify2进行精确的单元状态识别。","authors":"Wenze Ding, Yue Cao, Xiaohang Fu, Marni Torkel, Jean Yee Hwa Yang","doi":"10.1186/s13059-025-03722-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cell annotation is crucial for downstream exploration. Although many approaches, spanning from classic statistics to large language models, have been developed, most of their focus is on distinct cell types and overlook sequential cell populations. Here, we propose an annotation method, scClassify2, to specifically focus on adjacent cell state identification. By incorporating prior biological knowledge through a novel dual-layer architecture and ordinal regression, scClassify2 achieves competitive performance compared to other state-of-the-art methods. Besides single-cell RNA-sequencing data, scClassify2 is generalizable from different platforms including subcellular spatial transcriptomics data. We also develop a web server for academic uses.</p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"26 1","pages":"252"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362893/pdf/","citationCount":"0","resultStr":"{\"title\":\"A message passing framework for precise cell state identification with scClassify2.\",\"authors\":\"Wenze Ding, Yue Cao, Xiaohang Fu, Marni Torkel, Jean Yee Hwa Yang\",\"doi\":\"10.1186/s13059-025-03722-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell annotation is crucial for downstream exploration. Although many approaches, spanning from classic statistics to large language models, have been developed, most of their focus is on distinct cell types and overlook sequential cell populations. Here, we propose an annotation method, scClassify2, to specifically focus on adjacent cell state identification. By incorporating prior biological knowledge through a novel dual-layer architecture and ordinal regression, scClassify2 achieves competitive performance compared to other state-of-the-art methods. Besides single-cell RNA-sequencing data, scClassify2 is generalizable from different platforms including subcellular spatial transcriptomics data. We also develop a web server for academic uses.</p>\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"26 1\",\"pages\":\"252\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362893/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03722-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03722-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞注释对下游勘探至关重要。尽管已经开发了从经典统计到大型语言模型的许多方法,但它们的大多数重点都放在不同的细胞类型上,而忽略了连续的细胞种群。在这里,我们提出了一种标注方法scClassify2,专门用于相邻细胞状态的识别。通过新颖的双层结构和有序回归,scClassify2结合了先前的生物学知识,与其他最先进的方法相比,取得了具有竞争力的性能。除了单细胞rna测序数据外,scClassify2还可以从不同的平台推广,包括亚细胞空间转录组学数据。我们还开发了一个用于学术用途的web服务器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A message passing framework for precise cell state identification with scClassify2.

A message passing framework for precise cell state identification with scClassify2.

A message passing framework for precise cell state identification with scClassify2.

A message passing framework for precise cell state identification with scClassify2.

Cell annotation is crucial for downstream exploration. Although many approaches, spanning from classic statistics to large language models, have been developed, most of their focus is on distinct cell types and overlook sequential cell populations. Here, we propose an annotation method, scClassify2, to specifically focus on adjacent cell state identification. By incorporating prior biological knowledge through a novel dual-layer architecture and ordinal regression, scClassify2 achieves competitive performance compared to other state-of-the-art methods. Besides single-cell RNA-sequencing data, scClassify2 is generalizable from different platforms including subcellular spatial transcriptomics data. We also develop a web server for academic uses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信