Akash Sabarwal , Marc Machaalani , Laxminarayan Rawat , Johannes Wedel , Saba Tabasum , Yuzuru Sasamoto , Florian Buerger , Josie Ascione , Marc Eid , Karl Semaan , Eddy Saad , Yifan Yang , Dongwon Lee , F. Stephen Hodi , Matthew L. Freedman , Gwo-Shu Mary Lee , Murugabaskar Balan , Toni K. Choueiri , Soumitro Pal
{"title":"靶向AXL可有效克服c- met诱导的肾癌治疗耐药,并通过增加氧化应激促进肿瘤细胞死亡。","authors":"Akash Sabarwal , Marc Machaalani , Laxminarayan Rawat , Johannes Wedel , Saba Tabasum , Yuzuru Sasamoto , Florian Buerger , Josie Ascione , Marc Eid , Karl Semaan , Eddy Saad , Yifan Yang , Dongwon Lee , F. Stephen Hodi , Matthew L. Freedman , Gwo-Shu Mary Lee , Murugabaskar Balan , Toni K. Choueiri , Soumitro Pal","doi":"10.1016/j.canlet.2025.217984","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanisms underlying therapeutic resistance to c-Met/receptor tyrosine kinase (RTK) inhibitors in renal cancer remain unexplored. In renal cell carcinoma (RCC) cells, both AXL and c-Met are highly upregulated. Notably, we found that prolonged treatment with the c-Met/RTK inhibitor, cabozantinib (Cabo), a standard treatment for advanced-stage RCC, markedly increased total c-Met levels and promoted renal cancer cell proliferation. This effect was confirmed not only <em>in vitro</em> but also in murine models and renal tumor tissues from Cabo-treated patients. At lower concentrations (1 nM and 10 nM), Cabo treatment failed to inhibit HGF (c-Met ligand)-induced c-Met phosphorylation. Instead, it further enhanced receptor phosphorylation and downstream signaling events for tumor growth. Additionally, Cabo treatment induced AXL-c-Met association and disrupted the physiological degradation of c-Met. However, inhibition or knockout of AXL could significantly overcome therapeutic resistance to c-Met inhibitor(s). It triggered apoptotic cell death through increased oxidative stress and inhibition of the redox-sensitive transcription factor, Nrf2 and its effector molecule, heme oxygenase-1 (HO-1). We also generated Cabo-resistant RCC cells and observed a marked upregulation of both c-Met and AXL in these cells. Epigenomic profiling revealed significant differences between Cabo-resistant and Cabo-sensitive RCC cells. Importantly, inhibition of AXL either using a potent inhibitor, TP-0903, or through genetic silencing resensitized the resistant cells to Cabo-induced cell death. Together, our findings highlight AXL as a key driver of therapeutic resistance to c-Met inhibitors. A combination therapy targeting both c-Met and AXL in renal cancer could be a promising strategy to overcome the acquired resistance to c-Met inhibitors through increased oxidative stress.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"633 ","pages":"Article 217984"},"PeriodicalIF":10.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting AXL can effectively overcome c-Met-induced therapeutic resistance in renal cancer and promote tumor cell death through increased oxidative stress\",\"authors\":\"Akash Sabarwal , Marc Machaalani , Laxminarayan Rawat , Johannes Wedel , Saba Tabasum , Yuzuru Sasamoto , Florian Buerger , Josie Ascione , Marc Eid , Karl Semaan , Eddy Saad , Yifan Yang , Dongwon Lee , F. Stephen Hodi , Matthew L. Freedman , Gwo-Shu Mary Lee , Murugabaskar Balan , Toni K. Choueiri , Soumitro Pal\",\"doi\":\"10.1016/j.canlet.2025.217984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanisms underlying therapeutic resistance to c-Met/receptor tyrosine kinase (RTK) inhibitors in renal cancer remain unexplored. In renal cell carcinoma (RCC) cells, both AXL and c-Met are highly upregulated. Notably, we found that prolonged treatment with the c-Met/RTK inhibitor, cabozantinib (Cabo), a standard treatment for advanced-stage RCC, markedly increased total c-Met levels and promoted renal cancer cell proliferation. This effect was confirmed not only <em>in vitro</em> but also in murine models and renal tumor tissues from Cabo-treated patients. At lower concentrations (1 nM and 10 nM), Cabo treatment failed to inhibit HGF (c-Met ligand)-induced c-Met phosphorylation. Instead, it further enhanced receptor phosphorylation and downstream signaling events for tumor growth. Additionally, Cabo treatment induced AXL-c-Met association and disrupted the physiological degradation of c-Met. However, inhibition or knockout of AXL could significantly overcome therapeutic resistance to c-Met inhibitor(s). It triggered apoptotic cell death through increased oxidative stress and inhibition of the redox-sensitive transcription factor, Nrf2 and its effector molecule, heme oxygenase-1 (HO-1). We also generated Cabo-resistant RCC cells and observed a marked upregulation of both c-Met and AXL in these cells. Epigenomic profiling revealed significant differences between Cabo-resistant and Cabo-sensitive RCC cells. Importantly, inhibition of AXL either using a potent inhibitor, TP-0903, or through genetic silencing resensitized the resistant cells to Cabo-induced cell death. Together, our findings highlight AXL as a key driver of therapeutic resistance to c-Met inhibitors. A combination therapy targeting both c-Met and AXL in renal cancer could be a promising strategy to overcome the acquired resistance to c-Met inhibitors through increased oxidative stress.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"633 \",\"pages\":\"Article 217984\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525005543\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525005543","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting AXL can effectively overcome c-Met-induced therapeutic resistance in renal cancer and promote tumor cell death through increased oxidative stress
The mechanisms underlying therapeutic resistance to c-Met/receptor tyrosine kinase (RTK) inhibitors in renal cancer remain unexplored. In renal cell carcinoma (RCC) cells, both AXL and c-Met are highly upregulated. Notably, we found that prolonged treatment with the c-Met/RTK inhibitor, cabozantinib (Cabo), a standard treatment for advanced-stage RCC, markedly increased total c-Met levels and promoted renal cancer cell proliferation. This effect was confirmed not only in vitro but also in murine models and renal tumor tissues from Cabo-treated patients. At lower concentrations (1 nM and 10 nM), Cabo treatment failed to inhibit HGF (c-Met ligand)-induced c-Met phosphorylation. Instead, it further enhanced receptor phosphorylation and downstream signaling events for tumor growth. Additionally, Cabo treatment induced AXL-c-Met association and disrupted the physiological degradation of c-Met. However, inhibition or knockout of AXL could significantly overcome therapeutic resistance to c-Met inhibitor(s). It triggered apoptotic cell death through increased oxidative stress and inhibition of the redox-sensitive transcription factor, Nrf2 and its effector molecule, heme oxygenase-1 (HO-1). We also generated Cabo-resistant RCC cells and observed a marked upregulation of both c-Met and AXL in these cells. Epigenomic profiling revealed significant differences between Cabo-resistant and Cabo-sensitive RCC cells. Importantly, inhibition of AXL either using a potent inhibitor, TP-0903, or through genetic silencing resensitized the resistant cells to Cabo-induced cell death. Together, our findings highlight AXL as a key driver of therapeutic resistance to c-Met inhibitors. A combination therapy targeting both c-Met and AXL in renal cancer could be a promising strategy to overcome the acquired resistance to c-Met inhibitors through increased oxidative stress.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.