强场条件下头重双扩散对流驱动的发电机

IF 4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Wei Fan, Yufeng Lin
{"title":"强场条件下头重双扩散对流驱动的发电机","authors":"Wei Fan,&nbsp;Yufeng Lin","doi":"10.1029/2025JE008969","DOIUrl":null,"url":null,"abstract":"<p>The magnetic fields of terrestrial planets are generated in their liquid cores through dynamo action driven by thermal and compositional convection. The coexistence of these two buoyancy sources gives rise to double-diffusive convection (DDC) due to the contrast between thermal and compositional diffusivities. However, most dynamo simulations adopt the co-density model, where the two diffusivities are assumed to be equal. In this study, we performed both hydrodynamic and dynamo simulations of top-heavy DDC in a rotating spherical shell with the Lewis number <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>100</mn>\n </mrow>\n <annotation> $Le=100$</annotation>\n </semantics></math>, and compared them with corresponding co-density models. In the hydrodynamic regime, the convective flow morphology is strongly influenced by the nature of the buoyancy sources. However, our dynamo simulations in the strong-field regime demonstrate that the co-density and DDC models yield qualitatively similar magnetic fields at comparable magnetic Reynolds numbers, albeit with some differences in detail. These numerical models further justify the use of the co-density model in planetary dynamo simulations. Finally, we demonstrate that dynamo models based on DDC and co-density produce similar magnetic fields and secular variations at the core-mantle boundary. This suggests that it may not be possible to distinguish the buoyancy sources responsible for planetary dynamos based solely on magnetic field observations.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamos Driven by Top-Heavy Double-Diffusive Convection in the Strong-Field Regime\",\"authors\":\"Wei Fan,&nbsp;Yufeng Lin\",\"doi\":\"10.1029/2025JE008969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The magnetic fields of terrestrial planets are generated in their liquid cores through dynamo action driven by thermal and compositional convection. The coexistence of these two buoyancy sources gives rise to double-diffusive convection (DDC) due to the contrast between thermal and compositional diffusivities. However, most dynamo simulations adopt the co-density model, where the two diffusivities are assumed to be equal. In this study, we performed both hydrodynamic and dynamo simulations of top-heavy DDC in a rotating spherical shell with the Lewis number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>100</mn>\\n </mrow>\\n <annotation> $Le=100$</annotation>\\n </semantics></math>, and compared them with corresponding co-density models. In the hydrodynamic regime, the convective flow morphology is strongly influenced by the nature of the buoyancy sources. However, our dynamo simulations in the strong-field regime demonstrate that the co-density and DDC models yield qualitatively similar magnetic fields at comparable magnetic Reynolds numbers, albeit with some differences in detail. These numerical models further justify the use of the co-density model in planetary dynamo simulations. Finally, we demonstrate that dynamo models based on DDC and co-density produce similar magnetic fields and secular variations at the core-mantle boundary. This suggests that it may not be possible to distinguish the buoyancy sources responsible for planetary dynamos based solely on magnetic field observations.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE008969\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE008969","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

类地行星的磁场是由热对流和成分对流驱动的发电机作用在其液态核心中产生的。由于热扩散系数和成分扩散系数的差异,这两种浮力源的共存产生了双扩散对流(DDC)。然而,大多数发电机模拟采用共密度模型,其中两种扩散率被假设为相等。在本研究中,我们对Lewis数Le=100$ Le=100$的旋转球壳中头重DDC进行了水动力和动力模拟,并与相应的共密度模型进行了比较。在水动力状态下,对流流动形态受浮力源性质的强烈影响。然而,我们在强场环境下的发电机模拟表明,共密度模型和DDC模型在相当的磁雷诺数下产生的磁场质量相似,尽管在细节上存在一些差异。这些数值模型进一步证明了共密度模型在行星发电机模拟中的应用。最后,我们证明了基于DDC和共密度的发电机模型在核幔边界产生相似的磁场和长期变化。这表明,仅仅根据磁场观测来区分行星发电机的浮力来源可能是不可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamos Driven by Top-Heavy Double-Diffusive Convection in the Strong-Field Regime

The magnetic fields of terrestrial planets are generated in their liquid cores through dynamo action driven by thermal and compositional convection. The coexistence of these two buoyancy sources gives rise to double-diffusive convection (DDC) due to the contrast between thermal and compositional diffusivities. However, most dynamo simulations adopt the co-density model, where the two diffusivities are assumed to be equal. In this study, we performed both hydrodynamic and dynamo simulations of top-heavy DDC in a rotating spherical shell with the Lewis number L e = 100 $Le=100$ , and compared them with corresponding co-density models. In the hydrodynamic regime, the convective flow morphology is strongly influenced by the nature of the buoyancy sources. However, our dynamo simulations in the strong-field regime demonstrate that the co-density and DDC models yield qualitatively similar magnetic fields at comparable magnetic Reynolds numbers, albeit with some differences in detail. These numerical models further justify the use of the co-density model in planetary dynamo simulations. Finally, we demonstrate that dynamo models based on DDC and co-density produce similar magnetic fields and secular variations at the core-mantle boundary. This suggests that it may not be possible to distinguish the buoyancy sources responsible for planetary dynamos based solely on magnetic field observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信