岩土工程大变形模拟的颗粒有限元方法进展与展望

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wei Zhang, Wenrui Sun, Weihai Yuan, Ming Liu
{"title":"岩土工程大变形模拟的颗粒有限元方法进展与展望","authors":"Wei Zhang,&nbsp;Wenrui Sun,&nbsp;Weihai Yuan,&nbsp;Ming Liu","doi":"10.1007/s40571-025-01000-4","DOIUrl":null,"url":null,"abstract":"<div><p>Particle finite element method (PFEM) can effectively simulate large deformation problems in geotechnical disasters such as landslides, debris flows, and dam breaks. In recent years, PFEM has attracted much attention at home and abroad. The research progress of PFEM for large deformation simulation in geotechnical engineering is reviewed. Firstly, the development history and basic idea of the PFEM are introduced. Then, the theoretical progress of the computational theory for PFEM in geotechnical engineering is presented. Finally, the application progress of the PFEM for large deformation simulation in geotechnical engineering is introduced, including collapse and landslide problems, structure–soil coupling large deformation problems, hydromechanical coupled problems, etc. Through the review of the research progress of PFEM for large deformation simulation in geotechnical engineering, the cognition of relevant researchers in this field is deepened, and the development of large deformation simulation theory and engineering application of PFEM for geotechnical engineering is promoted.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 4","pages":"1893 - 1911"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress and prospect of particle finite element method for large deformation simulation in geotechnical engineering\",\"authors\":\"Wei Zhang,&nbsp;Wenrui Sun,&nbsp;Weihai Yuan,&nbsp;Ming Liu\",\"doi\":\"10.1007/s40571-025-01000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Particle finite element method (PFEM) can effectively simulate large deformation problems in geotechnical disasters such as landslides, debris flows, and dam breaks. In recent years, PFEM has attracted much attention at home and abroad. The research progress of PFEM for large deformation simulation in geotechnical engineering is reviewed. Firstly, the development history and basic idea of the PFEM are introduced. Then, the theoretical progress of the computational theory for PFEM in geotechnical engineering is presented. Finally, the application progress of the PFEM for large deformation simulation in geotechnical engineering is introduced, including collapse and landslide problems, structure–soil coupling large deformation problems, hydromechanical coupled problems, etc. Through the review of the research progress of PFEM for large deformation simulation in geotechnical engineering, the cognition of relevant researchers in this field is deepened, and the development of large deformation simulation theory and engineering application of PFEM for geotechnical engineering is promoted.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"12 4\",\"pages\":\"1893 - 1911\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-025-01000-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-025-01000-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

颗粒有限元法(PFEM)可以有效地模拟滑坡、泥石流、溃坝等岩土灾害中的大变形问题。近年来,PFEM在国内外引起了广泛的关注。综述了PFEM在岩土工程大变形模拟中的研究进展。首先,介绍了PFEM的发展历史和基本思想。然后介绍了岩土工程中PFEM计算理论的研究进展。最后介绍了PFEM在岩土工程大变形模拟中的应用进展,包括崩塌与滑坡问题、结构-土耦合大变形问题、水-力耦合问题等。通过对岩土工程大变形模拟的PFEM研究进展的回顾,加深了相关研究人员对该领域的认识,促进了岩土工程大变形模拟理论和PFEM工程应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress and prospect of particle finite element method for large deformation simulation in geotechnical engineering

Particle finite element method (PFEM) can effectively simulate large deformation problems in geotechnical disasters such as landslides, debris flows, and dam breaks. In recent years, PFEM has attracted much attention at home and abroad. The research progress of PFEM for large deformation simulation in geotechnical engineering is reviewed. Firstly, the development history and basic idea of the PFEM are introduced. Then, the theoretical progress of the computational theory for PFEM in geotechnical engineering is presented. Finally, the application progress of the PFEM for large deformation simulation in geotechnical engineering is introduced, including collapse and landslide problems, structure–soil coupling large deformation problems, hydromechanical coupled problems, etc. Through the review of the research progress of PFEM for large deformation simulation in geotechnical engineering, the cognition of relevant researchers in this field is deepened, and the development of large deformation simulation theory and engineering application of PFEM for geotechnical engineering is promoted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信