{"title":"基于深度学习的海冰破碎模拟离散元法参数定标","authors":"Lu Liu, Ting Wang, Xue Long, Shunying Ji","doi":"10.1007/s40571-025-00928-x","DOIUrl":null,"url":null,"abstract":"<div><p>The macro-scale material parameters of sea-ice and meso-scale model parameters in the discrete element method (DEM) for sea ice have a strongly nonlinear relationship because of the size effect in the DEM model. The parametric calibration is necessary to obtain high precision of sea-ice dynamics including the failure and fragmentation. This paper proposes a deep-learning-based parametric calibration for the parallel-bonding-based DEM model of sea ice, considering that the deep learning is good at establishing the nonlinear relationship of multiple input and output parameters. The training and prediction data are generated through DEM simulations, including uniaxial compression and three-point bending tests of sea ice in the DEM. The neural networks are employed to train the model by using the training data in which material parameters are the input data and model parameters are the output data. The prediction data illustrate that the prediction errors for different model parameters are less than 30%. The empirical formula that determines the bonding strength and internal friction from the compressive and flexural strength of sea ice is used for the validation as well. The comparison indicates that the neural networks have better precision than the empirical formula, and more parameters can be determined in the neural networks. Furthermore, the DEM simulation is used to validate whether the simulation results of strength can reach the input strength parameters. The validation shows that the error is lower than 6%. Hence, the proposed deep-learning-based parametric calibration yields highly accurate and effective results for DEM simulations.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 4","pages":"2437 - 2454"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based parametric calibration of discrete element method for the breakage simulation of sea ice\",\"authors\":\"Lu Liu, Ting Wang, Xue Long, Shunying Ji\",\"doi\":\"10.1007/s40571-025-00928-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The macro-scale material parameters of sea-ice and meso-scale model parameters in the discrete element method (DEM) for sea ice have a strongly nonlinear relationship because of the size effect in the DEM model. The parametric calibration is necessary to obtain high precision of sea-ice dynamics including the failure and fragmentation. This paper proposes a deep-learning-based parametric calibration for the parallel-bonding-based DEM model of sea ice, considering that the deep learning is good at establishing the nonlinear relationship of multiple input and output parameters. The training and prediction data are generated through DEM simulations, including uniaxial compression and three-point bending tests of sea ice in the DEM. The neural networks are employed to train the model by using the training data in which material parameters are the input data and model parameters are the output data. The prediction data illustrate that the prediction errors for different model parameters are less than 30%. The empirical formula that determines the bonding strength and internal friction from the compressive and flexural strength of sea ice is used for the validation as well. The comparison indicates that the neural networks have better precision than the empirical formula, and more parameters can be determined in the neural networks. Furthermore, the DEM simulation is used to validate whether the simulation results of strength can reach the input strength parameters. The validation shows that the error is lower than 6%. Hence, the proposed deep-learning-based parametric calibration yields highly accurate and effective results for DEM simulations.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"12 4\",\"pages\":\"2437 - 2454\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-025-00928-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-025-00928-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep-learning-based parametric calibration of discrete element method for the breakage simulation of sea ice
The macro-scale material parameters of sea-ice and meso-scale model parameters in the discrete element method (DEM) for sea ice have a strongly nonlinear relationship because of the size effect in the DEM model. The parametric calibration is necessary to obtain high precision of sea-ice dynamics including the failure and fragmentation. This paper proposes a deep-learning-based parametric calibration for the parallel-bonding-based DEM model of sea ice, considering that the deep learning is good at establishing the nonlinear relationship of multiple input and output parameters. The training and prediction data are generated through DEM simulations, including uniaxial compression and three-point bending tests of sea ice in the DEM. The neural networks are employed to train the model by using the training data in which material parameters are the input data and model parameters are the output data. The prediction data illustrate that the prediction errors for different model parameters are less than 30%. The empirical formula that determines the bonding strength and internal friction from the compressive and flexural strength of sea ice is used for the validation as well. The comparison indicates that the neural networks have better precision than the empirical formula, and more parameters can be determined in the neural networks. Furthermore, the DEM simulation is used to validate whether the simulation results of strength can reach the input strength parameters. The validation shows that the error is lower than 6%. Hence, the proposed deep-learning-based parametric calibration yields highly accurate and effective results for DEM simulations.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.