{"title":"一类Gelfand对的Kirillov-Lipsman轨道方法:第1部分","authors":"Aymen Rahali, Ibtissem Ben Chenni","doi":"10.1007/s13370-025-01354-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(G:=K\\ltimes N\\)</span> be the semidirect product with Lie algebra <span>\\(\\mathfrak {g},\\)</span> where <i>N</i> is a simply connected nilpotent Lie group, and <i>K</i> is a subgroup of the automorphisms group, <i>Aut</i>(<i>N</i>), of <i>N</i>. We say that the pair (<i>K</i>, <i>N</i>) is a nilpotent Gelfand pair when the set <span>\\(L_K^1(N)\\)</span> of integrable <i>K</i>-invariant functions on <i>N</i> forms an abelian algebra under convolution. According to Lipsman, the unitary dual <span>\\(\\widehat{G}\\)</span> of <i>G</i> is in one-to-one correspondence with the space of admissible coadjoint orbits <span>\\(\\mathfrak {g}^\\ddag /G\\)</span> of <i>G</i>. Under some assumptions on the pair (<i>K</i>, <i>N</i>) we will show in this paper and its sequel (part II), that the Kirillov–Lipsman bijection </p><div><div><span>$$\\widehat{G}\\simeq \\mathfrak {g}^\\ddagger /G$$</span></div></div><p>is a homeomorphism for a class of Lie groups associated with the nilpotent Gelfand pairs (<i>K</i>, <i>N</i>). Part I (this paper) concerns generalities and the study of the convergence in the quotient space <span>\\(\\mathfrak {g}^\\ddag /G.\\)</span> More precisely, we give a necessary and sufficient conditions when a sequence of admissible coadjoint orbits converges in <span>\\(\\mathfrak {g}^\\ddag /G.\\)</span></p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirillov–Lipsman orbit method of a class of Gelfand pairs: part I\",\"authors\":\"Aymen Rahali, Ibtissem Ben Chenni\",\"doi\":\"10.1007/s13370-025-01354-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(G:=K\\\\ltimes N\\\\)</span> be the semidirect product with Lie algebra <span>\\\\(\\\\mathfrak {g},\\\\)</span> where <i>N</i> is a simply connected nilpotent Lie group, and <i>K</i> is a subgroup of the automorphisms group, <i>Aut</i>(<i>N</i>), of <i>N</i>. We say that the pair (<i>K</i>, <i>N</i>) is a nilpotent Gelfand pair when the set <span>\\\\(L_K^1(N)\\\\)</span> of integrable <i>K</i>-invariant functions on <i>N</i> forms an abelian algebra under convolution. According to Lipsman, the unitary dual <span>\\\\(\\\\widehat{G}\\\\)</span> of <i>G</i> is in one-to-one correspondence with the space of admissible coadjoint orbits <span>\\\\(\\\\mathfrak {g}^\\\\ddag /G\\\\)</span> of <i>G</i>. Under some assumptions on the pair (<i>K</i>, <i>N</i>) we will show in this paper and its sequel (part II), that the Kirillov–Lipsman bijection </p><div><div><span>$$\\\\widehat{G}\\\\simeq \\\\mathfrak {g}^\\\\ddagger /G$$</span></div></div><p>is a homeomorphism for a class of Lie groups associated with the nilpotent Gelfand pairs (<i>K</i>, <i>N</i>). Part I (this paper) concerns generalities and the study of the convergence in the quotient space <span>\\\\(\\\\mathfrak {g}^\\\\ddag /G.\\\\)</span> More precisely, we give a necessary and sufficient conditions when a sequence of admissible coadjoint orbits converges in <span>\\\\(\\\\mathfrak {g}^\\\\ddag /G.\\\\)</span></p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01354-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01354-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Kirillov–Lipsman orbit method of a class of Gelfand pairs: part I
Let \(G:=K\ltimes N\) be the semidirect product with Lie algebra \(\mathfrak {g},\) where N is a simply connected nilpotent Lie group, and K is a subgroup of the automorphisms group, Aut(N), of N. We say that the pair (K, N) is a nilpotent Gelfand pair when the set \(L_K^1(N)\) of integrable K-invariant functions on N forms an abelian algebra under convolution. According to Lipsman, the unitary dual \(\widehat{G}\) of G is in one-to-one correspondence with the space of admissible coadjoint orbits \(\mathfrak {g}^\ddag /G\) of G. Under some assumptions on the pair (K, N) we will show in this paper and its sequel (part II), that the Kirillov–Lipsman bijection
$$\widehat{G}\simeq \mathfrak {g}^\ddagger /G$$
is a homeomorphism for a class of Lie groups associated with the nilpotent Gelfand pairs (K, N). Part I (this paper) concerns generalities and the study of the convergence in the quotient space \(\mathfrak {g}^\ddag /G.\) More precisely, we give a necessary and sufficient conditions when a sequence of admissible coadjoint orbits converges in \(\mathfrak {g}^\ddag /G.\)