超长周期(53.8 min)脉冲星ASKAP J1935+2148:局部超强磁重联触发的相干射电发射

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Zhi-Yao Yang, Cheng-Min Zhang, De-Hua Wang, Erbil Gügercinoğlu, Xiang-Han Cui, Jian-Wei Zhang, Shu Ma, Yun-Gang Zhou
{"title":"超长周期(53.8 min)脉冲星ASKAP J1935+2148:局部超强磁重联触发的相干射电发射","authors":"Zhi-Yao Yang,&nbsp;Cheng-Min Zhang,&nbsp;De-Hua Wang,&nbsp;Erbil Gügercinoğlu,&nbsp;Xiang-Han Cui,&nbsp;Jian-Wei Zhang,&nbsp;Shu Ma,&nbsp;Yun-Gang Zhou","doi":"10.1007/s10509-025-04479-8","DOIUrl":null,"url":null,"abstract":"<div><p>The eight ultra-long period pulsars (ULPPs) in radio bands have been discovered recently, e.g., ASKAP J1935+2148 with a spin period of 53.8 min, which are much longer than those of normal pulsars, spanning from 0.016 s to 23.5 s, however the origins, spin evolutions and emission mechanisms of these sources are still puzzling. We investigate how the ultra-long period of ASKAP J1935+2148 is evolved by the braking of relativistic particle wind, in a time scale of about 0.1 - 1 Myr, from a normal pulsar with local superstrong magnetic fields. In addition, it is noticed that the ULPPs in the period versus period derivative diagram are much below the “death line”, implying their different characteristics from the normal pulsars. Five sources (including ASKAP J1935+2148) in total eight ULPPs share the rotational energy loss rates to be lower than their respective radio emission luminosities, a phenomenon that can be accounted for by the sustainable radio bursts induced through the reconnection of locally concentrated magnetic field lines. The diversity and complexity of ULPP radio emissions should be closely related to the presence of magnetic reconnection rather than rotational powered discharges in the gaps. Furthermore, it is suggested that the coherent radio emissions of pulsars may have two origins, one from the rotation-powered electric voltage that accounts for the normal pulsar phenomena and the other from the magnetic reconnection-induced continual radio bursts that account for the ULPP observations.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On ultra-long period (53.8 min) pulsar ASKAP J1935+2148: coherent radio emission triggered by local superstrong magnetic reconnection\",\"authors\":\"Zhi-Yao Yang,&nbsp;Cheng-Min Zhang,&nbsp;De-Hua Wang,&nbsp;Erbil Gügercinoğlu,&nbsp;Xiang-Han Cui,&nbsp;Jian-Wei Zhang,&nbsp;Shu Ma,&nbsp;Yun-Gang Zhou\",\"doi\":\"10.1007/s10509-025-04479-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The eight ultra-long period pulsars (ULPPs) in radio bands have been discovered recently, e.g., ASKAP J1935+2148 with a spin period of 53.8 min, which are much longer than those of normal pulsars, spanning from 0.016 s to 23.5 s, however the origins, spin evolutions and emission mechanisms of these sources are still puzzling. We investigate how the ultra-long period of ASKAP J1935+2148 is evolved by the braking of relativistic particle wind, in a time scale of about 0.1 - 1 Myr, from a normal pulsar with local superstrong magnetic fields. In addition, it is noticed that the ULPPs in the period versus period derivative diagram are much below the “death line”, implying their different characteristics from the normal pulsars. Five sources (including ASKAP J1935+2148) in total eight ULPPs share the rotational energy loss rates to be lower than their respective radio emission luminosities, a phenomenon that can be accounted for by the sustainable radio bursts induced through the reconnection of locally concentrated magnetic field lines. The diversity and complexity of ULPP radio emissions should be closely related to the presence of magnetic reconnection rather than rotational powered discharges in the gaps. Furthermore, it is suggested that the coherent radio emissions of pulsars may have two origins, one from the rotation-powered electric voltage that accounts for the normal pulsar phenomena and the other from the magnetic reconnection-induced continual radio bursts that account for the ULPP observations.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"370 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-025-04479-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04479-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来在射电波段发现了8颗超长周期脉冲星(ULPPs),如ASKAP J1935+2148,其自旋周期为53.8 min,比普通脉冲星长得多,从0.016 s到23.5 s,但这些源的起源、自旋演化和发射机制仍是一个谜。我们研究了ASKAP J1935+2148的超长周期是如何在大约0.1 - 1 Myr的时间尺度上由具有局部超强磁场的普通脉冲星产生的相对论粒子风的制动演变而来的。此外,我们注意到周期与周期导数图中的ulp远低于“死亡线”,这表明它们与正常脉冲星的特征不同。5个源(包括ASKAP J1935+2148)共有8个ulpp的旋转能量损失率低于各自的射电发射光度,这一现象可以通过局部集中磁力线重连引起的持续射电爆发来解释。ULPP无线电发射的多样性和复杂性应该与磁重联的存在密切相关,而不是与间隙中的旋转功率放电密切相关。此外,有人认为脉冲星的相干射电发射可能有两个来源,一个来自旋转供电的电压,这解释了正常的脉冲星现象,另一个来自磁重联引起的连续射电爆发,这解释了ULPP观测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On ultra-long period (53.8 min) pulsar ASKAP J1935+2148: coherent radio emission triggered by local superstrong magnetic reconnection

The eight ultra-long period pulsars (ULPPs) in radio bands have been discovered recently, e.g., ASKAP J1935+2148 with a spin period of 53.8 min, which are much longer than those of normal pulsars, spanning from 0.016 s to 23.5 s, however the origins, spin evolutions and emission mechanisms of these sources are still puzzling. We investigate how the ultra-long period of ASKAP J1935+2148 is evolved by the braking of relativistic particle wind, in a time scale of about 0.1 - 1 Myr, from a normal pulsar with local superstrong magnetic fields. In addition, it is noticed that the ULPPs in the period versus period derivative diagram are much below the “death line”, implying their different characteristics from the normal pulsars. Five sources (including ASKAP J1935+2148) in total eight ULPPs share the rotational energy loss rates to be lower than their respective radio emission luminosities, a phenomenon that can be accounted for by the sustainable radio bursts induced through the reconnection of locally concentrated magnetic field lines. The diversity and complexity of ULPP radio emissions should be closely related to the presence of magnetic reconnection rather than rotational powered discharges in the gaps. Furthermore, it is suggested that the coherent radio emissions of pulsars may have two origins, one from the rotation-powered electric voltage that accounts for the normal pulsar phenomena and the other from the magnetic reconnection-induced continual radio bursts that account for the ULPP observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信