𝒮𝑒𝑔𝓂𝑒𝑛𝑡:用于遥感图像分割的标签特定变形

IF 4.4
Yechan Kim;Dongho Yoon;SooYeon Kim;Moongu Jeon
{"title":"𝒮𝑒𝑔𝓂𝑒𝑛𝑡:用于遥感图像分割的标签特定变形","authors":"Yechan Kim;Dongho Yoon;SooYeon Kim;Moongu Jeon","doi":"10.1109/LGRS.2025.3595851","DOIUrl":null,"url":null,"abstract":"Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models. While sophisticated mechanisms, such as label selection or noise correction, might address the issue mentioned above, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment—a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. The experimental results demonstrate that our approach improves the performance of RS image segmentation over various state-of-the-art models.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"𝒩𝒮𝑒𝑔𝓂𝑒𝑛𝑡: Label-Specific Deformations for Remote Sensing Image Segmentation\",\"authors\":\"Yechan Kim;Dongho Yoon;SooYeon Kim;Moongu Jeon\",\"doi\":\"10.1109/LGRS.2025.3595851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models. While sophisticated mechanisms, such as label selection or noise correction, might address the issue mentioned above, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment—a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. The experimental results demonstrate that our approach improves the performance of RS image segmentation over various state-of-the-art models.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11113320/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11113320/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于模糊的类边界、混合的像素、阴影、复杂的地形特征和主观的注释者偏见,遥感(RS)图像分割数据集的标记错误通常是隐式的和微妙的。此外,由于标注成本高,标注RS数据的稀缺性使训练噪声鲁棒模型变得复杂。虽然诸如标签选择或噪声校正之类的复杂机制可能解决上述问题,但它们往往会增加训练时间并增加实现的复杂性。在这封信中,我们提出了nsegment——一个简单而有效的数据增强解决方案来缓解这个问题。与传统方法不同,该方法仅对分割标签进行弹性变换,在每个训练历元中改变每个样本的变形强度,以解决注释不一致的问题。实验结果表明,我们的方法可以提高各种最先进模型的RS图像分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
𝒩𝒮𝑒𝑔𝓂𝑒𝑛𝑡: Label-Specific Deformations for Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to the high cost of labeling complicates training noise-robust models. While sophisticated mechanisms, such as label selection or noise correction, might address the issue mentioned above, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment—a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. The experimental results demonstrate that our approach improves the performance of RS image segmentation over various state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信