DMSDA-YOLO:遥感目标检测的动态多尺度扩展注意

IF 4.4
Zhenghua Huang;Zijian Xu;Xi Li;Yaozong Zhang;Yu Shi;Qian Li;Hao Fang
{"title":"DMSDA-YOLO:遥感目标检测的动态多尺度扩展注意","authors":"Zhenghua Huang;Zijian Xu;Xi Li;Yaozong Zhang;Yu Shi;Qian Li;Hao Fang","doi":"10.1109/LGRS.2025.3596809","DOIUrl":null,"url":null,"abstract":"It is an extremely challenging task to detect multiscale targets (especially small objects) in remote sensing (RS) images with complex backgrounds. This letter develops a novel RS object detection model, namely dynamic multiscale dilated attention based on YOLOv5 (DMSDA-YOLO), of which the key improvements include: one is that, in the backbone, a multiscale dilated attention fusion module (MDAFM) is proposed to capture multiscale feature information and a coordinate anchor attention (CAA) mechanism is incorporated to increase the focus on target regions while suppressing background interference. The other is that a spatial attention pyramid neck network is proposed to improve its feature fusion capability while a dynamic attention-aware feature extraction module (DAFEM) is introduced to enhance the network’s adaptability to multiscale targets in the neck. Objective and subjective results of experiments on the DIOR, HRRSD, and NWPU VHR-10 datasets demonstrate that our DMSDA-YOLO outperforms existing state-of-the-art object detection approaches in detecting multiscale targets under complex backgrounds, and its competitive computational complexity is beneficial for its extensive application.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DMSDA-YOLO: Dynamic Multiscale Dilated Attention for Remote Sensing Object Detection\",\"authors\":\"Zhenghua Huang;Zijian Xu;Xi Li;Yaozong Zhang;Yu Shi;Qian Li;Hao Fang\",\"doi\":\"10.1109/LGRS.2025.3596809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is an extremely challenging task to detect multiscale targets (especially small objects) in remote sensing (RS) images with complex backgrounds. This letter develops a novel RS object detection model, namely dynamic multiscale dilated attention based on YOLOv5 (DMSDA-YOLO), of which the key improvements include: one is that, in the backbone, a multiscale dilated attention fusion module (MDAFM) is proposed to capture multiscale feature information and a coordinate anchor attention (CAA) mechanism is incorporated to increase the focus on target regions while suppressing background interference. The other is that a spatial attention pyramid neck network is proposed to improve its feature fusion capability while a dynamic attention-aware feature extraction module (DAFEM) is introduced to enhance the network’s adaptability to multiscale targets in the neck. Objective and subjective results of experiments on the DIOR, HRRSD, and NWPU VHR-10 datasets demonstrate that our DMSDA-YOLO outperforms existing state-of-the-art object detection approaches in detecting multiscale targets under complex backgrounds, and its competitive computational complexity is beneficial for its extensive application.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119686/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119686/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂背景的遥感图像中,多尺度目标特别是小目标的检测是一项极具挑战性的任务。本文提出了一种基于YOLOv5的动态多尺度扩张注意(DMSDA-YOLO)的遥感目标检测模型,其主要改进包括:一是在主干网中引入多尺度扩张注意融合模块(MDAFM)捕获多尺度特征信息,并引入坐标锚定注意(CAA)机制,在抑制背景干扰的同时增加对目标区域的关注;二是提出一种空间注意力金字塔颈部网络,提高其特征融合能力,并引入动态注意力感知特征提取模块(DAFEM),增强网络对颈部多尺度目标的适应性。在DIOR、HRRSD和NWPU VHR-10数据集上的客观和主观实验结果表明,我们的DMSDA-YOLO在复杂背景下的多尺度目标检测方面优于现有的最先进的目标检测方法,其具有竞争力的计算复杂度有利于其广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DMSDA-YOLO: Dynamic Multiscale Dilated Attention for Remote Sensing Object Detection
It is an extremely challenging task to detect multiscale targets (especially small objects) in remote sensing (RS) images with complex backgrounds. This letter develops a novel RS object detection model, namely dynamic multiscale dilated attention based on YOLOv5 (DMSDA-YOLO), of which the key improvements include: one is that, in the backbone, a multiscale dilated attention fusion module (MDAFM) is proposed to capture multiscale feature information and a coordinate anchor attention (CAA) mechanism is incorporated to increase the focus on target regions while suppressing background interference. The other is that a spatial attention pyramid neck network is proposed to improve its feature fusion capability while a dynamic attention-aware feature extraction module (DAFEM) is introduced to enhance the network’s adaptability to multiscale targets in the neck. Objective and subjective results of experiments on the DIOR, HRRSD, and NWPU VHR-10 datasets demonstrate that our DMSDA-YOLO outperforms existing state-of-the-art object detection approaches in detecting multiscale targets under complex backgrounds, and its competitive computational complexity is beneficial for its extensive application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信