基于搜索空间移动的冷却结晶过程贝叶斯优化

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tae Hoon Oh , Kazuki Kato , Osamu Tonomura , Ken-Ichiro Sotowa
{"title":"基于搜索空间移动的冷却结晶过程贝叶斯优化","authors":"Tae Hoon Oh ,&nbsp;Kazuki Kato ,&nbsp;Osamu Tonomura ,&nbsp;Ken-Ichiro Sotowa","doi":"10.1016/j.compchemeng.2025.109350","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental automation equipped with data-driven optimization is attracting significant attention as an effective platform for finding optimal operating conditions. The key is to automate the decision-making procedure using Bayesian optimization. However, the optimization performance depends heavily on the search space, which is typically selected manually by an expert with domain knowledge. This study proposes a new Bayesian optimization algorithm with a search space movement strategy to automate the search space selection procedure. Simulation studies of two benchmark problems show that the proposed method can determine the optimal conditions with fewer trials than existing methods. Furthermore, the proposed method was applied to maximize the productivity of batch cooling crystallization. The experimental results indicate that the proposed Bayesian optimization algorithm can automatically and robustly find the proper search space and thus improve productivity by up to 46%.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"203 ","pages":"Article 109350"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian optimization with search space movement for cooling crystallization process\",\"authors\":\"Tae Hoon Oh ,&nbsp;Kazuki Kato ,&nbsp;Osamu Tonomura ,&nbsp;Ken-Ichiro Sotowa\",\"doi\":\"10.1016/j.compchemeng.2025.109350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Experimental automation equipped with data-driven optimization is attracting significant attention as an effective platform for finding optimal operating conditions. The key is to automate the decision-making procedure using Bayesian optimization. However, the optimization performance depends heavily on the search space, which is typically selected manually by an expert with domain knowledge. This study proposes a new Bayesian optimization algorithm with a search space movement strategy to automate the search space selection procedure. Simulation studies of two benchmark problems show that the proposed method can determine the optimal conditions with fewer trials than existing methods. Furthermore, the proposed method was applied to maximize the productivity of batch cooling crystallization. The experimental results indicate that the proposed Bayesian optimization algorithm can automatically and robustly find the proper search space and thus improve productivity by up to 46%.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"203 \",\"pages\":\"Article 109350\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425003527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

基于数据驱动优化的实验自动化作为一种寻找最佳操作条件的有效平台,正受到人们的广泛关注。关键是利用贝叶斯优化实现决策过程的自动化。然而,优化性能在很大程度上依赖于搜索空间,而搜索空间通常由具有领域知识的专家手动选择。本文提出了一种新的贝叶斯优化算法,并结合搜索空间移动策略实现了搜索空间选择过程的自动化。对两个基准问题的仿真研究表明,与现有方法相比,该方法能够以更少的试验次数确定最优条件。应用该方法实现了间歇冷却结晶生产效率的最大化。实验结果表明,所提出的贝叶斯优化算法能够自动鲁棒地找到合适的搜索空间,从而将生产率提高了46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian optimization with search space movement for cooling crystallization process
Experimental automation equipped with data-driven optimization is attracting significant attention as an effective platform for finding optimal operating conditions. The key is to automate the decision-making procedure using Bayesian optimization. However, the optimization performance depends heavily on the search space, which is typically selected manually by an expert with domain knowledge. This study proposes a new Bayesian optimization algorithm with a search space movement strategy to automate the search space selection procedure. Simulation studies of two benchmark problems show that the proposed method can determine the optimal conditions with fewer trials than existing methods. Furthermore, the proposed method was applied to maximize the productivity of batch cooling crystallization. The experimental results indicate that the proposed Bayesian optimization algorithm can automatically and robustly find the proper search space and thus improve productivity by up to 46%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信