基于重力补偿和耦合ses - sfd动力学的重载斜齿轮系统协同振动控制

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Zhaoyang Tian , Jinyuan Tang , Mengqi Wang , Bozhao Ma , Zehua Hu , Kaibin Rong
{"title":"基于重力补偿和耦合ses - sfd动力学的重载斜齿轮系统协同振动控制","authors":"Zhaoyang Tian ,&nbsp;Jinyuan Tang ,&nbsp;Mengqi Wang ,&nbsp;Bozhao Ma ,&nbsp;Zehua Hu ,&nbsp;Kaibin Rong","doi":"10.1016/j.mechmachtheory.2025.106186","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy-duty helical gears in high-power transmission systems face critical vibration challenges arising from thin-walled web designs for enhancing power density. This study proposes a hybrid vibration control strategy integrating a squirrel cage elastic support (SCES) and squeeze film damper (SFD). A dynamic modeling framework employs quadratic hexahedral elements for flexible gear shafts and quadratic tetrahedral elements for efficient SCES parametric analysis. Component mode synthesis (CMS) is used to balance computational efficiency and accuracy, while nonlinear oil-film forces of the SFD are calculated via the finite difference method. The model is validated through SCES modal testing (errors &lt;4 %) and system-level finite element analysis of deformations, stresses, and modal characteristics. Key findings reveal that the SCES effectively regulates shaft-related vibrations without altering web-dominated high-order modes, reducing the 7th-order umbrella mode frequency by 5.5 %. Gravity-induced eccentricity degrades SFD damping performance, which is mitigated by a pre-offset SCES configuration that reduces SCES dynamic stresses by 5.4 % and maintains vibration suppression under gravitational loads. This methodology establishes a systematic framework for optimizing the structural-dynamic performance of heavy-duty gear systems, enhancing durability and operational stability.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"215 ","pages":"Article 106186"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic vibration control in heavy-duty helical gear systems through gravity compensation and coupled SCES-SFD dynamics\",\"authors\":\"Zhaoyang Tian ,&nbsp;Jinyuan Tang ,&nbsp;Mengqi Wang ,&nbsp;Bozhao Ma ,&nbsp;Zehua Hu ,&nbsp;Kaibin Rong\",\"doi\":\"10.1016/j.mechmachtheory.2025.106186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heavy-duty helical gears in high-power transmission systems face critical vibration challenges arising from thin-walled web designs for enhancing power density. This study proposes a hybrid vibration control strategy integrating a squirrel cage elastic support (SCES) and squeeze film damper (SFD). A dynamic modeling framework employs quadratic hexahedral elements for flexible gear shafts and quadratic tetrahedral elements for efficient SCES parametric analysis. Component mode synthesis (CMS) is used to balance computational efficiency and accuracy, while nonlinear oil-film forces of the SFD are calculated via the finite difference method. The model is validated through SCES modal testing (errors &lt;4 %) and system-level finite element analysis of deformations, stresses, and modal characteristics. Key findings reveal that the SCES effectively regulates shaft-related vibrations without altering web-dominated high-order modes, reducing the 7th-order umbrella mode frequency by 5.5 %. Gravity-induced eccentricity degrades SFD damping performance, which is mitigated by a pre-offset SCES configuration that reduces SCES dynamic stresses by 5.4 % and maintains vibration suppression under gravitational loads. This methodology establishes a systematic framework for optimizing the structural-dynamic performance of heavy-duty gear systems, enhancing durability and operational stability.</div></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":\"215 \",\"pages\":\"Article 106186\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X25002757\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25002757","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

大功率传动系统中的重型斜齿轮面临着薄壁腹板设计带来的关键振动挑战,以提高功率密度。提出了一种鼠笼弹性支承与挤压膜阻尼器相结合的混合振动控制策略。采用二次六面体单元对柔性齿轮轴进行动力学建模,采用二次四面体单元对高效的ses参数分析进行动力学建模。采用分量模态综合(CMS)来平衡计算效率和精度,采用有限差分法计算SFD的非线性油膜力。该模型通过SCES模态试验(误差<; 4%)和变形、应力和模态特性的系统级有限元分析进行了验证。关键研究结果表明,在不改变蛛网主导的高阶模态的情况下,SCES有效地调节了轴相关振动,将7阶伞形模态频率降低了5.5%。重力引起的偏心会降低SFD的阻尼性能,而预偏移的ses配置可以将ses的动态应力降低5.4%,并在重力载荷下保持振动抑制。该方法建立了一个系统的框架,用于优化重型齿轮系统的结构动力性能,提高耐用性和运行稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic vibration control in heavy-duty helical gear systems through gravity compensation and coupled SCES-SFD dynamics
Heavy-duty helical gears in high-power transmission systems face critical vibration challenges arising from thin-walled web designs for enhancing power density. This study proposes a hybrid vibration control strategy integrating a squirrel cage elastic support (SCES) and squeeze film damper (SFD). A dynamic modeling framework employs quadratic hexahedral elements for flexible gear shafts and quadratic tetrahedral elements for efficient SCES parametric analysis. Component mode synthesis (CMS) is used to balance computational efficiency and accuracy, while nonlinear oil-film forces of the SFD are calculated via the finite difference method. The model is validated through SCES modal testing (errors <4 %) and system-level finite element analysis of deformations, stresses, and modal characteristics. Key findings reveal that the SCES effectively regulates shaft-related vibrations without altering web-dominated high-order modes, reducing the 7th-order umbrella mode frequency by 5.5 %. Gravity-induced eccentricity degrades SFD damping performance, which is mitigated by a pre-offset SCES configuration that reduces SCES dynamic stresses by 5.4 % and maintains vibration suppression under gravitational loads. This methodology establishes a systematic framework for optimizing the structural-dynamic performance of heavy-duty gear systems, enhancing durability and operational stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信