Peng Li , Guangshi Liu , Wenbin Zhang , Tao Li , Xinhui Yang
{"title":"Prkci激活Jak2/Stat3信号,促进肿瘤血管生成","authors":"Peng Li , Guangshi Liu , Wenbin Zhang , Tao Li , Xinhui Yang","doi":"10.1016/j.neo.2025.101219","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Tumor angiogenesis is essential for colorectal cancer (CRC) progression, providing oxygen and nutrients to sustain tumor growth and metastasis. Protein kinase C iota (Prkci) is an atypical protein kinase known for its oncogenic roles in various cancers; however, its function in CRC angiogenesis remains largely unexplored. This study investigates the role of Prkci in regulating tumor angiogenesis through the Jak2/Stat3 signaling pathway.</div></div><div><h3>Methods</h3><div>Prkci expression levels in CRC tissues and their correlation with micro-vessel density and patient prognosis were analyzed. Functional experiments, including endothelial cell proliferation, migration, and tube formation assays, were performed in vitro to assess the angiogenic effects of Prkci. In vivo, a CRC xenograft mouse model with Prkci knockout was used to evaluate tumor growth and angiogenesis. Mechanistic studies explored how Prkci activates Jak2 by phosphorylating it at the S633 site, leading to downstream Stat3 activation and Vegfa expression.</div></div><div><h3>Results</h3><div>Prkci was upregulated in CRC tissues and correlated with increased micro-vessel density and poor patient prognosis. In vitro, Prkci overexpression enhanced endothelial cell proliferation, migration, and tube formation, while Prkci knockout inhibited these processes. Mechanistically, Prkci phosphorylated Jak2 at S633, leading to enhanced Stat3 activation and increased Vegfa expression, which promoted angiogenesis. In vivo, Prkci knockout in CRC cells significantly reduced tumor growth, angiogenesis, and prolonged survival in a mouse model.</div></div><div><h3>Conclusions</h3><div>These findings identify Prkci as a key regulator of angiogenesis in CRC through Jak2/Stat3 signaling activation. Targeting Prkci could provide a novel therapeutic approach to inhibit tumor angiogenesis and limit CRC progression.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"68 ","pages":"Article 101219"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prkci activates Jak2/Stat3 signaling to promote tumor angiogenesis\",\"authors\":\"Peng Li , Guangshi Liu , Wenbin Zhang , Tao Li , Xinhui Yang\",\"doi\":\"10.1016/j.neo.2025.101219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Tumor angiogenesis is essential for colorectal cancer (CRC) progression, providing oxygen and nutrients to sustain tumor growth and metastasis. Protein kinase C iota (Prkci) is an atypical protein kinase known for its oncogenic roles in various cancers; however, its function in CRC angiogenesis remains largely unexplored. This study investigates the role of Prkci in regulating tumor angiogenesis through the Jak2/Stat3 signaling pathway.</div></div><div><h3>Methods</h3><div>Prkci expression levels in CRC tissues and their correlation with micro-vessel density and patient prognosis were analyzed. Functional experiments, including endothelial cell proliferation, migration, and tube formation assays, were performed in vitro to assess the angiogenic effects of Prkci. In vivo, a CRC xenograft mouse model with Prkci knockout was used to evaluate tumor growth and angiogenesis. Mechanistic studies explored how Prkci activates Jak2 by phosphorylating it at the S633 site, leading to downstream Stat3 activation and Vegfa expression.</div></div><div><h3>Results</h3><div>Prkci was upregulated in CRC tissues and correlated with increased micro-vessel density and poor patient prognosis. In vitro, Prkci overexpression enhanced endothelial cell proliferation, migration, and tube formation, while Prkci knockout inhibited these processes. Mechanistically, Prkci phosphorylated Jak2 at S633, leading to enhanced Stat3 activation and increased Vegfa expression, which promoted angiogenesis. In vivo, Prkci knockout in CRC cells significantly reduced tumor growth, angiogenesis, and prolonged survival in a mouse model.</div></div><div><h3>Conclusions</h3><div>These findings identify Prkci as a key regulator of angiogenesis in CRC through Jak2/Stat3 signaling activation. Targeting Prkci could provide a novel therapeutic approach to inhibit tumor angiogenesis and limit CRC progression.</div></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"68 \",\"pages\":\"Article 101219\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558625000983\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000983","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Prkci activates Jak2/Stat3 signaling to promote tumor angiogenesis
Background
Tumor angiogenesis is essential for colorectal cancer (CRC) progression, providing oxygen and nutrients to sustain tumor growth and metastasis. Protein kinase C iota (Prkci) is an atypical protein kinase known for its oncogenic roles in various cancers; however, its function in CRC angiogenesis remains largely unexplored. This study investigates the role of Prkci in regulating tumor angiogenesis through the Jak2/Stat3 signaling pathway.
Methods
Prkci expression levels in CRC tissues and their correlation with micro-vessel density and patient prognosis were analyzed. Functional experiments, including endothelial cell proliferation, migration, and tube formation assays, were performed in vitro to assess the angiogenic effects of Prkci. In vivo, a CRC xenograft mouse model with Prkci knockout was used to evaluate tumor growth and angiogenesis. Mechanistic studies explored how Prkci activates Jak2 by phosphorylating it at the S633 site, leading to downstream Stat3 activation and Vegfa expression.
Results
Prkci was upregulated in CRC tissues and correlated with increased micro-vessel density and poor patient prognosis. In vitro, Prkci overexpression enhanced endothelial cell proliferation, migration, and tube formation, while Prkci knockout inhibited these processes. Mechanistically, Prkci phosphorylated Jak2 at S633, leading to enhanced Stat3 activation and increased Vegfa expression, which promoted angiogenesis. In vivo, Prkci knockout in CRC cells significantly reduced tumor growth, angiogenesis, and prolonged survival in a mouse model.
Conclusions
These findings identify Prkci as a key regulator of angiogenesis in CRC through Jak2/Stat3 signaling activation. Targeting Prkci could provide a novel therapeutic approach to inhibit tumor angiogenesis and limit CRC progression.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.