S6和S8上轴对称函数的Sharp Beckner不等式

IF 1.5 1区 数学 Q1 MATHEMATICS
Changfeng Gui , Tuoxin Li , Juncheng Wei , Zikai Ye
{"title":"S6和S8上轴对称函数的Sharp Beckner不等式","authors":"Changfeng Gui ,&nbsp;Tuoxin Li ,&nbsp;Juncheng Wei ,&nbsp;Zikai Ye","doi":"10.1016/j.aim.2025.110487","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that for <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and 8, axially symmetric solutions to the <em>Q</em>-curvature type problem<span><span><span><math><mi>α</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow></mfrac><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> must be constants, provided that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span> and the center of mass of <em>u</em> is at the origin. We also show that this result is sharp. This result closes the gap of the related results in <span><span>[21]</span></span>, which proved a similar uniqueness result for <span><math><mi>α</mi><mo>≥</mo><mn>0.6168</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mn>0.8261</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm <span><math><msup><mrow><mo>⌊</mo><mi>G</mi><mo>⌋</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> using a new way of integration by parts. The other is a family of refined pointwise estimates (<span><span>Lemma 3.7</span></span>, <span><span>Lemma 3.9</span></span>) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (<span><span>Lemma 3.10</span></span>, <span><span>Proposition 3.11</span></span>, <span><span>Corollary 3.12</span></span>). In particular, we use a three-fold line function when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span> to further enhance the estimates of Gegenbauer polynomials.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110487"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Beckner's inequalities for axially symmetric functions on S6 and S8\",\"authors\":\"Changfeng Gui ,&nbsp;Tuoxin Li ,&nbsp;Juncheng Wei ,&nbsp;Zikai Ye\",\"doi\":\"10.1016/j.aim.2025.110487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that for <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and 8, axially symmetric solutions to the <em>Q</em>-curvature type problem<span><span><span><math><mi>α</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow></mfrac><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> must be constants, provided that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></math></span> and the center of mass of <em>u</em> is at the origin. We also show that this result is sharp. This result closes the gap of the related results in <span><span>[21]</span></span>, which proved a similar uniqueness result for <span><math><mi>α</mi><mo>≥</mo><mn>0.6168</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mn>0.8261</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm <span><math><msup><mrow><mo>⌊</mo><mi>G</mi><mo>⌋</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> using a new way of integration by parts. The other is a family of refined pointwise estimates (<span><span>Lemma 3.7</span></span>, <span><span>Lemma 3.9</span></span>) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (<span><span>Lemma 3.10</span></span>, <span><span>Proposition 3.11</span></span>, <span><span>Corollary 3.12</span></span>). In particular, we use a three-fold line function when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span> to further enhance the estimates of Gegenbauer polynomials.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110487\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003858\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003858","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了对于N=6和8,q曲率型问题α pnu +(N−1)的轴对称解!(1−eNu∫SNeNu)=0onSN必须是常数,只要12≤α<;1,且u的质心在原点。我们也证明了这个结果是尖锐的。该结果填补了[21]中相关结果的空白,证明了N=6时α≥0.6168和N=8时α≥0.8261的唯一性结果相似。由此,我们得到了S6和S8上质心在原点的轴对称函数的sharp Beckner不等式的最佳常数,并在N=6和N=8的轴对称情况下正回答了广义Chang-Yang猜想。这一改进是基于两种新的估计数。一是利用一种新的分部积分法对半范数⌊G⌋2进行改进估计。另一个是由Gegenbauer多项式的衰减估计和消去性质(引理3.10,命题3.11,推论3.12)建立的Gegenbauer系数的精细点估计族(引理3.7,引理3.9)。特别是,当N=8时,我们使用三重线函数来进一步增强Gegenbauer多项式的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp Beckner's inequalities for axially symmetric functions on S6 and S8
We prove that for N=6 and 8, axially symmetric solutions to the Q-curvature type problemαPNu+(N1)!(1eNuSNeNu)=0onSN must be constants, provided that 12α<1 and the center of mass of u is at the origin. We also show that this result is sharp. This result closes the gap of the related results in [21], which proved a similar uniqueness result for α0.6168 when N=6 and α0.8261 when N=8. As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on S6 and S8 whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when N=6 and N=8. The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm G2 using a new way of integration by parts. The other is a family of refined pointwise estimates (Lemma 3.7, Lemma 3.9) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (Lemma 3.10, Proposition 3.11, Corollary 3.12). In particular, we use a three-fold line function when N=8 to further enhance the estimates of Gegenbauer polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信