Changfeng Gui , Tuoxin Li , Juncheng Wei , Zikai Ye
{"title":"S6和S8上轴对称函数的Sharp Beckner不等式","authors":"Changfeng Gui , Tuoxin Li , Juncheng Wei , Zikai Ye","doi":"10.1016/j.aim.2025.110487","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that for <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and 8, axially symmetric solutions to the <em>Q</em>-curvature type problem<span><span><span><math><mi>α</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow></mfrac><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> must be constants, provided that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>α</mi><mo><</mo><mn>1</mn></math></span> and the center of mass of <em>u</em> is at the origin. We also show that this result is sharp. This result closes the gap of the related results in <span><span>[21]</span></span>, which proved a similar uniqueness result for <span><math><mi>α</mi><mo>≥</mo><mn>0.6168</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mn>0.8261</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm <span><math><msup><mrow><mo>⌊</mo><mi>G</mi><mo>⌋</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> using a new way of integration by parts. The other is a family of refined pointwise estimates (<span><span>Lemma 3.7</span></span>, <span><span>Lemma 3.9</span></span>) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (<span><span>Lemma 3.10</span></span>, <span><span>Proposition 3.11</span></span>, <span><span>Corollary 3.12</span></span>). In particular, we use a three-fold line function when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span> to further enhance the estimates of Gegenbauer polynomials.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110487"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Beckner's inequalities for axially symmetric functions on S6 and S8\",\"authors\":\"Changfeng Gui , Tuoxin Li , Juncheng Wei , Zikai Ye\",\"doi\":\"10.1016/j.aim.2025.110487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that for <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and 8, axially symmetric solutions to the <em>Q</em>-curvature type problem<span><span><span><math><mi>α</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>N</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>!</mo><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>N</mi><mi>u</mi></mrow></msup></mrow></mfrac><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> must be constants, provided that <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><mi>α</mi><mo><</mo><mn>1</mn></math></span> and the center of mass of <em>u</em> is at the origin. We also show that this result is sharp. This result closes the gap of the related results in <span><span>[21]</span></span>, which proved a similar uniqueness result for <span><math><mi>α</mi><mo>≥</mo><mn>0.6168</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mn>0.8261</mn></math></span> when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when <span><math><mi>N</mi><mo>=</mo><mn>6</mn></math></span> and <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span>. The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm <span><math><msup><mrow><mo>⌊</mo><mi>G</mi><mo>⌋</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> using a new way of integration by parts. The other is a family of refined pointwise estimates (<span><span>Lemma 3.7</span></span>, <span><span>Lemma 3.9</span></span>) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (<span><span>Lemma 3.10</span></span>, <span><span>Proposition 3.11</span></span>, <span><span>Corollary 3.12</span></span>). In particular, we use a three-fold line function when <span><math><mi>N</mi><mo>=</mo><mn>8</mn></math></span> to further enhance the estimates of Gegenbauer polynomials.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110487\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003858\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003858","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sharp Beckner's inequalities for axially symmetric functions on S6 and S8
We prove that for and 8, axially symmetric solutions to the Q-curvature type problem must be constants, provided that and the center of mass of u is at the origin. We also show that this result is sharp. This result closes the gap of the related results in [21], which proved a similar uniqueness result for when and when . As a consequence, we attain the best constant of sharp Beckner's inequality for axially symmetric functions on and whose center of mass is at the origin and answer the generalized Chang-Yang conjecture positively in the axially symmetric case when and . The improvement is based on two types of new estimates. One is the refined estimate of the semi-norm using a new way of integration by parts. The other is a family of refined pointwise estimates (Lemma 3.7, Lemma 3.9) on Gegenbauer coefficients, which is established by the decaying estimates and cancellation property of Gegenbauer polynomials (Lemma 3.10, Proposition 3.11, Corollary 3.12). In particular, we use a three-fold line function when to further enhance the estimates of Gegenbauer polynomials.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.