具有双变扭系数的Aut(Fn)的稳定上同调

IF 1.5 1区 数学 Q1 MATHEMATICS
Erik Lindell
{"title":"具有双变扭系数的Aut(Fn)的稳定上同调","authors":"Erik Lindell","doi":"10.1016/j.aim.2025.110483","DOIUrl":null,"url":null,"abstract":"<div><div>We compute the cohomology groups of the automorphism group of the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with coefficients in arbitrary tensor products of the standard rational representation <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Q</mi><mo>)</mo></math></span> and its dual, in a range where <em>n</em> is sufficiently large compared to the cohomological degree and the number of tensor factors.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110483"},"PeriodicalIF":1.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable cohomology of Aut(Fn) with bivariant twisted coefficients\",\"authors\":\"Erik Lindell\",\"doi\":\"10.1016/j.aim.2025.110483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We compute the cohomology groups of the automorphism group of the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with coefficients in arbitrary tensor products of the standard rational representation <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>Q</mi><mo>)</mo></math></span> and its dual, in a range where <em>n</em> is sufficiently large compared to the cohomological degree and the number of tensor factors.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110483\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003810\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003810","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了自由群Fn的自同构群的上同调群,其系数在标准有理式H1(Fn,Q)及其对偶的任意张量积中,且n相对于上同调度和张量因子的数目足够大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable cohomology of Aut(Fn) with bivariant twisted coefficients
We compute the cohomology groups of the automorphism group of the free group Fn, with coefficients in arbitrary tensor products of the standard rational representation H1(Fn,Q) and its dual, in a range where n is sufficiently large compared to the cohomological degree and the number of tensor factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信