非零背景下的修正Korteweg-de Vries方程孤子气体

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Xiaoen Zhang , Liming Ling
{"title":"非零背景下的修正Korteweg-de Vries方程孤子气体","authors":"Xiaoen Zhang ,&nbsp;Liming Ling","doi":"10.1016/j.physd.2025.134890","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a soliton gas of the focusing modified Korteweg–de Vries generated from the <span><math><mi>N</mi></math></span>-soliton solutions on a nonzero background. The spectral soliton density is chosen on the pure imaginary axis, excluding the branch cut <span><math><mrow><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mfenced><mrow><mo>−</mo><mi>i</mi><mo>,</mo><mi>i</mi></mrow></mfenced></mrow></math></span>. In the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, we establish the Riemann–Hilbert Problem of the soliton gas. Using the Deift-Zhou nonlinear steepest-descent method, this soliton gas on a nonzero background will decay to a constant background as <span><math><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, while its asymptotics as <span><math><mrow><mi>x</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> can be expressed with a Riemann Theta function, attached to a Riemann surface with genus-two. We also analyze the large <span><math><mi>t</mi></math></span> asymptotics over the entire spatial domain, which is divided into three distinct asymptotic regions depending on the ratio <span><math><mrow><mi>ξ</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></mfrac></mrow></math></span>. Using the similar method, we provide the leading-order asymptotic behaviors for these three regions and exhibit the dynamics of large <span><math><mi>t</mi></math></span> asymptotics.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134890"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified Korteweg–de Vries equation soliton gas on a nonzero background\",\"authors\":\"Xiaoen Zhang ,&nbsp;Liming Ling\",\"doi\":\"10.1016/j.physd.2025.134890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a soliton gas of the focusing modified Korteweg–de Vries generated from the <span><math><mi>N</mi></math></span>-soliton solutions on a nonzero background. The spectral soliton density is chosen on the pure imaginary axis, excluding the branch cut <span><math><mrow><msub><mrow><mi>Σ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mfenced><mrow><mo>−</mo><mi>i</mi><mo>,</mo><mi>i</mi></mrow></mfenced></mrow></math></span>. In the limit <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, we establish the Riemann–Hilbert Problem of the soliton gas. Using the Deift-Zhou nonlinear steepest-descent method, this soliton gas on a nonzero background will decay to a constant background as <span><math><mrow><mi>x</mi><mo>→</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, while its asymptotics as <span><math><mrow><mi>x</mi><mo>→</mo><mo>−</mo><mi>∞</mi></mrow></math></span> can be expressed with a Riemann Theta function, attached to a Riemann surface with genus-two. We also analyze the large <span><math><mi>t</mi></math></span> asymptotics over the entire spatial domain, which is divided into three distinct asymptotic regions depending on the ratio <span><math><mrow><mi>ξ</mi><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>t</mi></mrow></mfrac></mrow></math></span>. Using the similar method, we provide the leading-order asymptotic behaviors for these three regions and exhibit the dynamics of large <span><math><mi>t</mi></math></span> asymptotics.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"482 \",\"pages\":\"Article 134890\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003677\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了在非零背景下由n -孤子解产生的聚焦修正Korteweg-de Vries孤子气体。谱孤子密度选择在纯虚轴上,排除分支切断Σc=−i,i。在极限N→∞下,建立了孤子气体的黎曼-希尔伯特问题。利用Deift-Zhou非线性最陡下降法,该孤子气体在非零背景下,当x→+∞时衰减到一个常数背景,而其渐近性可以用黎曼Theta函数表示,该函数附属于一类- 2黎曼曲面。我们还分析了整个空间域上的大t渐近性,根据比例ξ=xt将其划分为三个不同的渐近区域。利用类似的方法,我们给出了这三个区域的首阶渐近行为,并展示了大t渐近的动力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified Korteweg–de Vries equation soliton gas on a nonzero background
In this paper, we consider a soliton gas of the focusing modified Korteweg–de Vries generated from the N-soliton solutions on a nonzero background. The spectral soliton density is chosen on the pure imaginary axis, excluding the branch cut Σc=i,i. In the limit N, we establish the Riemann–Hilbert Problem of the soliton gas. Using the Deift-Zhou nonlinear steepest-descent method, this soliton gas on a nonzero background will decay to a constant background as x+, while its asymptotics as x can be expressed with a Riemann Theta function, attached to a Riemann surface with genus-two. We also analyze the large t asymptotics over the entire spatial domain, which is divided into three distinct asymptotic regions depending on the ratio ξ=xt. Using the similar method, we provide the leading-order asymptotic behaviors for these three regions and exhibit the dynamics of large t asymptotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信