Yiqian Zheng , Xiangnan Liu , Zhiwei Wang , Lijian Shangguan , Mingyu Wu
{"title":"带有空气弹簧和辅助腔室的振动系统的非线性频响分析与优化","authors":"Yiqian Zheng , Xiangnan Liu , Zhiwei Wang , Lijian Shangguan , Mingyu Wu","doi":"10.1016/j.jsv.2025.119386","DOIUrl":null,"url":null,"abstract":"<div><div>Vibration isolation systems incorporating air springs with auxiliary chambers (ASAC) exhibit complex vibration responses due to the nonlinear characteristics inherent in air springs. However, the underlying mechanisms of these nonlinear behaviors remain poorly understood. This study presents a dynamic model for ASAC and its vibration system, accounting for the gas polytropic process within two air chambers and the transient airflow characteristics in the flow passage. A test bench was built to measure the transmission rate of the system for model validation. Experimental results show that the transmission rate is dependent on both frequency and amplitude, where the orifice-type system exhibits a single resonance peak, while the pipe-type system shows two. Under varying excitation amplitudes, the response curves of the orifice-type system intersect at one amplitude-independent point, while the pipe-type intersects at two. Then, closed-form expressions for the resonance peaks and amplitude-independent points are derived, explaining the mechanisms of the nonlinear responses. The effects of damping ratio, stiffness ratio, and natural frequency ratio on the transmission rate are analyzed. Finally, a novel optimization strategy leveraging the characteristics of the amplitude-independent point is proposed to minimize the acceleration transmission rate across the entire frequency range. These findings provide guidelines for optimizing the design of vibration isolation systems with ASAC.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"619 ","pages":"Article 119386"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear frequency response analysis and optimization of vibration systems with air springs and auxiliary chambers\",\"authors\":\"Yiqian Zheng , Xiangnan Liu , Zhiwei Wang , Lijian Shangguan , Mingyu Wu\",\"doi\":\"10.1016/j.jsv.2025.119386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vibration isolation systems incorporating air springs with auxiliary chambers (ASAC) exhibit complex vibration responses due to the nonlinear characteristics inherent in air springs. However, the underlying mechanisms of these nonlinear behaviors remain poorly understood. This study presents a dynamic model for ASAC and its vibration system, accounting for the gas polytropic process within two air chambers and the transient airflow characteristics in the flow passage. A test bench was built to measure the transmission rate of the system for model validation. Experimental results show that the transmission rate is dependent on both frequency and amplitude, where the orifice-type system exhibits a single resonance peak, while the pipe-type system shows two. Under varying excitation amplitudes, the response curves of the orifice-type system intersect at one amplitude-independent point, while the pipe-type intersects at two. Then, closed-form expressions for the resonance peaks and amplitude-independent points are derived, explaining the mechanisms of the nonlinear responses. The effects of damping ratio, stiffness ratio, and natural frequency ratio on the transmission rate are analyzed. Finally, a novel optimization strategy leveraging the characteristics of the amplitude-independent point is proposed to minimize the acceleration transmission rate across the entire frequency range. These findings provide guidelines for optimizing the design of vibration isolation systems with ASAC.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"619 \",\"pages\":\"Article 119386\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X25004596\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25004596","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Nonlinear frequency response analysis and optimization of vibration systems with air springs and auxiliary chambers
Vibration isolation systems incorporating air springs with auxiliary chambers (ASAC) exhibit complex vibration responses due to the nonlinear characteristics inherent in air springs. However, the underlying mechanisms of these nonlinear behaviors remain poorly understood. This study presents a dynamic model for ASAC and its vibration system, accounting for the gas polytropic process within two air chambers and the transient airflow characteristics in the flow passage. A test bench was built to measure the transmission rate of the system for model validation. Experimental results show that the transmission rate is dependent on both frequency and amplitude, where the orifice-type system exhibits a single resonance peak, while the pipe-type system shows two. Under varying excitation amplitudes, the response curves of the orifice-type system intersect at one amplitude-independent point, while the pipe-type intersects at two. Then, closed-form expressions for the resonance peaks and amplitude-independent points are derived, explaining the mechanisms of the nonlinear responses. The effects of damping ratio, stiffness ratio, and natural frequency ratio on the transmission rate are analyzed. Finally, a novel optimization strategy leveraging the characteristics of the amplitude-independent point is proposed to minimize the acceleration transmission rate across the entire frequency range. These findings provide guidelines for optimizing the design of vibration isolation systems with ASAC.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.