铁空位在三角铁中的热力学特征:对相稳定性和电子性质的影响

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Tercio P. F. Xisto, Edson Ferreira da Silva Jr. and Hélio Anderson Duarte*, 
{"title":"铁空位在三角铁中的热力学特征:对相稳定性和电子性质的影响","authors":"Tercio P. F. Xisto,&nbsp;Edson Ferreira da Silva Jr. and Hélio Anderson Duarte*,&nbsp;","doi":"10.1021/acs.jpcc.5c03430","DOIUrl":null,"url":null,"abstract":"<p >Troilite (<i>FeS</i>) is the stoichiometric end-member of the pyrrhotite (<i>Fe</i><sub>1–<i>x</i></sub><i>S</i>) mineral group, where <i>x</i> ranges from 0 to 0.125. While pyrrhotite is among the most abundant sulfide minerals on Earth, troilite is primarily found in meteorites and lunar rocks. The ordering of <i>Fe</i> vacancies in the hexagonal structure of troilite leads to the prevalent monoclinic <i>Fe</i><sub>7</sub><i>S</i><sub>8</sub> pyrrhotite phase. The electronic properties of troilite have attracted increasing interest due to their relevance in catalysis, spectroscopy, geochemistry, and planetary science. In this study, we investigate native <i>Fe</i> vacancies in troilite and their influence on the electronic and geometric structure of troilite. Vacancy formation introduces new electronic states within the band gap. Thermodynamic analysis reveals that the Helmholtz free energy of vacancy formation in troilite reaches a minimum at <i>x</i> = 0.125 at 800 K. To better understand the transformation of troilite into pyrrhotite, we extended our thermodynamic study to the nonstoichiometric phase. For pyrrhotite, a free energy minimum is found at <i>x</i> = 0.125 at 500 K, which is more favorable than that in troilite for the same defect concentration. These results agree with experimental observations that pyrrhotite forms around 500 K, while troilite requires higher synthesis temperatures (&gt;1000 K). Topological analysis using QTAIM and the electron localization function reveals that Fe vacancies act as Lewis acid sites and that troilite exhibits a greater covalent character compared to other sulfide minerals.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 33","pages":"15059–15071"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5c03430","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Landscape of Iron Vacancies in Troilite: Implications for Phase Stability and Electronic Properties\",\"authors\":\"Tercio P. F. Xisto,&nbsp;Edson Ferreira da Silva Jr. and Hélio Anderson Duarte*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c03430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Troilite (<i>FeS</i>) is the stoichiometric end-member of the pyrrhotite (<i>Fe</i><sub>1–<i>x</i></sub><i>S</i>) mineral group, where <i>x</i> ranges from 0 to 0.125. While pyrrhotite is among the most abundant sulfide minerals on Earth, troilite is primarily found in meteorites and lunar rocks. The ordering of <i>Fe</i> vacancies in the hexagonal structure of troilite leads to the prevalent monoclinic <i>Fe</i><sub>7</sub><i>S</i><sub>8</sub> pyrrhotite phase. The electronic properties of troilite have attracted increasing interest due to their relevance in catalysis, spectroscopy, geochemistry, and planetary science. In this study, we investigate native <i>Fe</i> vacancies in troilite and their influence on the electronic and geometric structure of troilite. Vacancy formation introduces new electronic states within the band gap. Thermodynamic analysis reveals that the Helmholtz free energy of vacancy formation in troilite reaches a minimum at <i>x</i> = 0.125 at 800 K. To better understand the transformation of troilite into pyrrhotite, we extended our thermodynamic study to the nonstoichiometric phase. For pyrrhotite, a free energy minimum is found at <i>x</i> = 0.125 at 500 K, which is more favorable than that in troilite for the same defect concentration. These results agree with experimental observations that pyrrhotite forms around 500 K, while troilite requires higher synthesis temperatures (&gt;1000 K). Topological analysis using QTAIM and the electron localization function reveals that Fe vacancies act as Lewis acid sites and that troilite exhibits a greater covalent character compared to other sulfide minerals.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 33\",\"pages\":\"15059–15071\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5c03430\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c03430\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c03430","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫铁矿(Troilite, FeS)是磁黄铁矿(Fe1-xS)矿物群的化学计量端元,其x范围为0 ~ 0.125。磁黄铁矿是地球上最丰富的硫化物矿物之一,而三黄铁矿主要存在于陨石和月球岩石中。铁空位在三黄石六方结构中的排列顺序导致了普遍存在的单斜Fe7S8磁黄铁矿相。由于其在催化、光谱学、地球化学和行星科学等方面的相关性,三硅石的电子性质引起了人们越来越多的兴趣。在本研究中,我们研究了天然铁空位在三硝石中的作用及其对三硝石电子和几何结构的影响。空位的形成在带隙中引入了新的电子态。热力学分析表明,在800 K时,三硝石中空位形成的亥姆霍兹自由能在x = 0.125处达到最小值。为了更好地理解三黄石向磁黄铁矿的转变,我们将热力学研究扩展到非化学计量相。在500 K时,磁黄铁矿在x = 0.125处的自由能最小值比相同缺陷浓度下的三黄石更有利。这些结果与实验观察一致,磁黄铁矿在500 K左右形成,而三黄铁矿需要更高的合成温度(>1000 K)。利用QTAIM和电子定位函数的拓扑分析表明,铁空位充当刘易斯酸位点,与其他硫化物矿物相比,三硝石表现出更大的共价特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic Landscape of Iron Vacancies in Troilite: Implications for Phase Stability and Electronic Properties

Troilite (FeS) is the stoichiometric end-member of the pyrrhotite (Fe1–xS) mineral group, where x ranges from 0 to 0.125. While pyrrhotite is among the most abundant sulfide minerals on Earth, troilite is primarily found in meteorites and lunar rocks. The ordering of Fe vacancies in the hexagonal structure of troilite leads to the prevalent monoclinic Fe7S8 pyrrhotite phase. The electronic properties of troilite have attracted increasing interest due to their relevance in catalysis, spectroscopy, geochemistry, and planetary science. In this study, we investigate native Fe vacancies in troilite and their influence on the electronic and geometric structure of troilite. Vacancy formation introduces new electronic states within the band gap. Thermodynamic analysis reveals that the Helmholtz free energy of vacancy formation in troilite reaches a minimum at x = 0.125 at 800 K. To better understand the transformation of troilite into pyrrhotite, we extended our thermodynamic study to the nonstoichiometric phase. For pyrrhotite, a free energy minimum is found at x = 0.125 at 500 K, which is more favorable than that in troilite for the same defect concentration. These results agree with experimental observations that pyrrhotite forms around 500 K, while troilite requires higher synthesis temperatures (>1000 K). Topological analysis using QTAIM and the electron localization function reveals that Fe vacancies act as Lewis acid sites and that troilite exhibits a greater covalent character compared to other sulfide minerals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信