用于高容量蛋白质结合和选择性细胞毒性的表面工程铝纳米花

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Panqi Sun, Junbo Dang, Daiwu Deng, Zhi-Li Shen, Zhihao Lu, Ning-Ning Zhang, Yang Yang and Kun Liu*, 
{"title":"用于高容量蛋白质结合和选择性细胞毒性的表面工程铝纳米花","authors":"Panqi Sun,&nbsp;Junbo Dang,&nbsp;Daiwu Deng,&nbsp;Zhi-Li Shen,&nbsp;Zhihao Lu,&nbsp;Ning-Ning Zhang,&nbsp;Yang Yang and Kun Liu*,&nbsp;","doi":"10.1021/acs.jpcc.5c04685","DOIUrl":null,"url":null,"abstract":"<p >Aluminum nanoparticles (Al NPs) have emerged as promising alternatives to noble metal nanoparticles due to their abundance, low cost, biodegradability, and tunable localized surface plasmon resonance (LSPR) across a broad spectral range. Studies indicate that Al NPs exhibit a low cytotoxicity and favorable biodistribution. To further enhance their performance, hierarchical aluminum nanoflowers (Al NFs) were synthesized via the decomposition of H<sub>3</sub>Al(1-methylpyrrolidine) in diglyme (G2), using polyethylene glycol (PEG) as a ligand. By optimizing synthesis parameters, smaller-sized AlNF@PEG with a large specific surface area was obtained. The structure and formation mechanism of AlNF@PEG were systematically characterized. Owing to its large surface area and excellent biocompatibility, AlNF@PEG demonstrates potential as a novel nanocarrier for biomedical applications.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 33","pages":"15158–15165"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-Engineered Aluminum Nanoflowers for High-Capacity Protein Binding and Selective Cytotoxicity\",\"authors\":\"Panqi Sun,&nbsp;Junbo Dang,&nbsp;Daiwu Deng,&nbsp;Zhi-Li Shen,&nbsp;Zhihao Lu,&nbsp;Ning-Ning Zhang,&nbsp;Yang Yang and Kun Liu*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c04685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Aluminum nanoparticles (Al NPs) have emerged as promising alternatives to noble metal nanoparticles due to their abundance, low cost, biodegradability, and tunable localized surface plasmon resonance (LSPR) across a broad spectral range. Studies indicate that Al NPs exhibit a low cytotoxicity and favorable biodistribution. To further enhance their performance, hierarchical aluminum nanoflowers (Al NFs) were synthesized via the decomposition of H<sub>3</sub>Al(1-methylpyrrolidine) in diglyme (G2), using polyethylene glycol (PEG) as a ligand. By optimizing synthesis parameters, smaller-sized AlNF@PEG with a large specific surface area was obtained. The structure and formation mechanism of AlNF@PEG were systematically characterized. Owing to its large surface area and excellent biocompatibility, AlNF@PEG demonstrates potential as a novel nanocarrier for biomedical applications.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 33\",\"pages\":\"15158–15165\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04685\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铝纳米粒子(Al NPs)因其丰富、低成本、可生物降解性和广谱范围内可调谐的局部表面等离子体共振(LSPR)而成为贵金属纳米粒子的有前途的替代品。研究表明,Al NPs具有较低的细胞毒性和良好的生物分布。为了进一步提高其性能,以聚乙二醇(PEG)为配体,在二lyme (G2)中分解H3Al(1-甲基吡咯烷)合成了层次化铝纳米花(Al NFs)。通过优化合成参数,得到了尺寸更小、比表面积更大的AlNF@PEG。系统表征了AlNF@PEG的结构和形成机理。由于其大的表面积和优异的生物相容性,AlNF@PEG显示出作为生物医学应用的新型纳米载体的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface-Engineered Aluminum Nanoflowers for High-Capacity Protein Binding and Selective Cytotoxicity

Surface-Engineered Aluminum Nanoflowers for High-Capacity Protein Binding and Selective Cytotoxicity

Aluminum nanoparticles (Al NPs) have emerged as promising alternatives to noble metal nanoparticles due to their abundance, low cost, biodegradability, and tunable localized surface plasmon resonance (LSPR) across a broad spectral range. Studies indicate that Al NPs exhibit a low cytotoxicity and favorable biodistribution. To further enhance their performance, hierarchical aluminum nanoflowers (Al NFs) were synthesized via the decomposition of H3Al(1-methylpyrrolidine) in diglyme (G2), using polyethylene glycol (PEG) as a ligand. By optimizing synthesis parameters, smaller-sized AlNF@PEG with a large specific surface area was obtained. The structure and formation mechanism of AlNF@PEG were systematically characterized. Owing to its large surface area and excellent biocompatibility, AlNF@PEG demonstrates potential as a novel nanocarrier for biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信