SynthAorta:一个参数化生理健康主动脉的三维网格数据集。

Domagoj Bosnjak, Gian Marco Melito, Richard Schussnig, Katrin Ellermann, Thomas-Peter Fries
{"title":"SynthAorta:一个参数化生理健康主动脉的三维网格数据集。","authors":"Domagoj Bosnjak, Gian Marco Melito, Richard Schussnig, Katrin Ellermann, Thomas-Peter Fries","doi":"10.1109/TMI.2025.3599937","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of the aortic geometry on its mechanics and blood flow, and subsequently on aortic pathologies, remain largely unexplored. The main obstacle lies in obtaining patient-specific aorta models, an extremely difficult procedure in terms of ethics and availability, segmentation, mesh generation, and all of the accompanying processes. Contrastingly, idealized models are easy to build but do not faithfully represent patient-specific variability. Additionally, a unified aortic parametrization in clinic and engineering has not yet been achieved. To bridge this gap, we introduce a new set of statistical parameters to generate synthetic models of the aorta. The parameters possess geometric significance and fall within physiological ranges, effectively bridging the disciplines of clinical medicine and engineering. Smoothly blended realistic representations are recovered with convolution surfaces. These enable high-quality visualization and biological appearance, whereas the structured mesh generation paves the way for numerical simulations. The only requirement of the approach is one patient-specific aorta model and the statistical data for parameter values obtained from the literature. The output of this work is SynthAorta, a dataset of ready-to-use synthetic, physiological aorta models, each containing a centerline, surface representation, and a structured hexahedral finite element mesh. The meshes are structured and fully consistent between different cases, making them imminently suitable for reduced order modeling and machine learning approaches.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynthAorta: A 3D Mesh Dataset of Parametrized Physiological Healthy Aortas.\",\"authors\":\"Domagoj Bosnjak, Gian Marco Melito, Richard Schussnig, Katrin Ellermann, Thomas-Peter Fries\",\"doi\":\"10.1109/TMI.2025.3599937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of the aortic geometry on its mechanics and blood flow, and subsequently on aortic pathologies, remain largely unexplored. The main obstacle lies in obtaining patient-specific aorta models, an extremely difficult procedure in terms of ethics and availability, segmentation, mesh generation, and all of the accompanying processes. Contrastingly, idealized models are easy to build but do not faithfully represent patient-specific variability. Additionally, a unified aortic parametrization in clinic and engineering has not yet been achieved. To bridge this gap, we introduce a new set of statistical parameters to generate synthetic models of the aorta. The parameters possess geometric significance and fall within physiological ranges, effectively bridging the disciplines of clinical medicine and engineering. Smoothly blended realistic representations are recovered with convolution surfaces. These enable high-quality visualization and biological appearance, whereas the structured mesh generation paves the way for numerical simulations. The only requirement of the approach is one patient-specific aorta model and the statistical data for parameter values obtained from the literature. The output of this work is SynthAorta, a dataset of ready-to-use synthetic, physiological aorta models, each containing a centerline, surface representation, and a structured hexahedral finite element mesh. The meshes are structured and fully consistent between different cases, making them imminently suitable for reduced order modeling and machine learning approaches.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2025.3599937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3599937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动脉几何形状对其力学和血流的影响,以及随后对主动脉病理的影响,在很大程度上仍未被探索。主要障碍在于获得患者特定的主动脉模型,这是一个在伦理和可用性、分割、网格生成以及所有伴随过程方面极其困难的过程。相比之下,理想化的模型很容易建立,但不能忠实地代表患者特定的可变性。此外,临床上和工程上尚未实现统一的主动脉参数化。为了弥补这一差距,我们引入了一组新的统计参数来生成主动脉的合成模型。这些参数具有几何意义,并在生理范围内,有效地连接了临床医学和工程学科。用卷积曲面恢复平滑混合的逼真表示。这些实现了高质量的可视化和生物外观,而结构化网格生成为数值模拟铺平了道路。该方法的唯一要求是一个患者特定的主动脉模型和从文献中获得的参数值的统计数据。这项工作的输出是SynthAorta,这是一个现成的合成生理主动脉模型数据集,每个模型都包含一个中心线、表面表示和一个结构化的六面体有限元网格。网格是结构化的,并且在不同情况下完全一致,使它们非常适合于降阶建模和机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SynthAorta: A 3D Mesh Dataset of Parametrized Physiological Healthy Aortas.

The effects of the aortic geometry on its mechanics and blood flow, and subsequently on aortic pathologies, remain largely unexplored. The main obstacle lies in obtaining patient-specific aorta models, an extremely difficult procedure in terms of ethics and availability, segmentation, mesh generation, and all of the accompanying processes. Contrastingly, idealized models are easy to build but do not faithfully represent patient-specific variability. Additionally, a unified aortic parametrization in clinic and engineering has not yet been achieved. To bridge this gap, we introduce a new set of statistical parameters to generate synthetic models of the aorta. The parameters possess geometric significance and fall within physiological ranges, effectively bridging the disciplines of clinical medicine and engineering. Smoothly blended realistic representations are recovered with convolution surfaces. These enable high-quality visualization and biological appearance, whereas the structured mesh generation paves the way for numerical simulations. The only requirement of the approach is one patient-specific aorta model and the statistical data for parameter values obtained from the literature. The output of this work is SynthAorta, a dataset of ready-to-use synthetic, physiological aorta models, each containing a centerline, surface representation, and a structured hexahedral finite element mesh. The meshes are structured and fully consistent between different cases, making them imminently suitable for reduced order modeling and machine learning approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信