基于自适应序列贝叶斯迭代学习的心脏图像序列心肌运动估计。

Shuxin Zhuang, Heye Zhang, Dong Liang, Hui Liu, Zhifan Gao
{"title":"基于自适应序列贝叶斯迭代学习的心脏图像序列心肌运动估计。","authors":"Shuxin Zhuang, Heye Zhang, Dong Liang, Hui Liu, Zhifan Gao","doi":"10.1109/TMI.2025.3599487","DOIUrl":null,"url":null,"abstract":"<p><p>Motion estimation of left ventricle myocardium on the cardiac image sequence is crucial for assessing cardiac function. However, the intensity variation of cardiac image sequences brings the challenge of uncertain interference to myocardial motion estimation. Such imaging-related uncertain interference appears in different cardiac imaging modalities. We propose adaptive sequential Bayesian iterative learning to overcome the challenge. Specifically, our method applies the adaptive structural inference to state transition and observation to cope with a complex myocardial motion under uncertain setting. In state transition, adaptive structural inference establishes a hierarchical structure recurrence to obtain the complex latent representation of cardiac image sequences. In state observation, the adaptive structural inference forms a chain structure mapping to correlate the latent representation of the cardiac image sequence with that of the motion. Extensive experiments on US, CMR, and TMR datasets concerning 1270 patients (650 patients for CMR, 500 patients for US and 120 patients for TMR) have shown the effectiveness of our method, as well as the superiority to eight state-of-the-art motion estimation methods.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Sequential Bayesian Iterative Learning for Myocardial Motion Estimation on Cardiac Image Sequences.\",\"authors\":\"Shuxin Zhuang, Heye Zhang, Dong Liang, Hui Liu, Zhifan Gao\",\"doi\":\"10.1109/TMI.2025.3599487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion estimation of left ventricle myocardium on the cardiac image sequence is crucial for assessing cardiac function. However, the intensity variation of cardiac image sequences brings the challenge of uncertain interference to myocardial motion estimation. Such imaging-related uncertain interference appears in different cardiac imaging modalities. We propose adaptive sequential Bayesian iterative learning to overcome the challenge. Specifically, our method applies the adaptive structural inference to state transition and observation to cope with a complex myocardial motion under uncertain setting. In state transition, adaptive structural inference establishes a hierarchical structure recurrence to obtain the complex latent representation of cardiac image sequences. In state observation, the adaptive structural inference forms a chain structure mapping to correlate the latent representation of the cardiac image sequence with that of the motion. Extensive experiments on US, CMR, and TMR datasets concerning 1270 patients (650 patients for CMR, 500 patients for US and 120 patients for TMR) have shown the effectiveness of our method, as well as the superiority to eight state-of-the-art motion estimation methods.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2025.3599487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3599487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在心脏图像序列上对左心室心肌的运动估计是评估心功能的关键。然而,心肌图像序列的强度变化给心肌运动估计带来了不确定干扰的挑战。这种与成像相关的不确定干扰出现在不同的心脏成像方式中。我们提出自适应顺序贝叶斯迭代学习来克服这一挑战。具体而言,我们的方法将自适应结构推理应用于状态转换和观察,以应对不确定环境下复杂的心肌运动。在状态转换中,自适应结构推理建立层次结构递归,获得心脏图像序列的复杂潜在表示。在状态观察中,自适应结构推理形成链式结构映射,将心脏图像序列的潜在表征与运动的潜在表征相关联。在1270例患者(650例CMR, 500例US和120例TMR)的US、CMR和TMR数据集上进行的大量实验表明,我们的方法是有效的,并且优于8种最先进的运动估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Sequential Bayesian Iterative Learning for Myocardial Motion Estimation on Cardiac Image Sequences.

Motion estimation of left ventricle myocardium on the cardiac image sequence is crucial for assessing cardiac function. However, the intensity variation of cardiac image sequences brings the challenge of uncertain interference to myocardial motion estimation. Such imaging-related uncertain interference appears in different cardiac imaging modalities. We propose adaptive sequential Bayesian iterative learning to overcome the challenge. Specifically, our method applies the adaptive structural inference to state transition and observation to cope with a complex myocardial motion under uncertain setting. In state transition, adaptive structural inference establishes a hierarchical structure recurrence to obtain the complex latent representation of cardiac image sequences. In state observation, the adaptive structural inference forms a chain structure mapping to correlate the latent representation of the cardiac image sequence with that of the motion. Extensive experiments on US, CMR, and TMR datasets concerning 1270 patients (650 patients for CMR, 500 patients for US and 120 patients for TMR) have shown the effectiveness of our method, as well as the superiority to eight state-of-the-art motion estimation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信